File size: 13,456 Bytes
546a9ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

"""ROUGe metric implementation.

This is a modified and slightly extended verison of
https://github.com/miso-belica/sumy/blob/dev/sumy/evaluation/rouge.py.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import itertools
import numpy as np

# pylint: disable=C0103


def _get_ngrams(n, text):
    """Calcualtes n-grams.

    Args:
      n: which n-grams to calculate
      text: An array of tokens

    Returns:
      A set of n-grams
    """
    ngram_set = {}
    text_length = len(text)
    max_index_ngram_start = text_length - n
    for i in range(max_index_ngram_start + 1):
        k = " ".join(text[i : i + n])
        if k not in ngram_set:
            ngram_set[k] = 0
        ngram_set[k] += 1
    return ngram_set


def _get_su(dist, text):
    """Calcualtes skip-grams and unigram

    Args:
      n: which n-grams to calculate
      text: An array of tokens

    Returns:
      A set of n-grams
    """
    su_set = {}
    text_length = len(text)
    for i in range(text_length):
        k = text[i]
        if k not in su_set:
            su_set[k] = 0
        su_set[k] += 1
        for j in range(i + 1, text_length):
            if j - i - 1 > dist:
                break
            k = text[i] + " " + text[j]
            if k not in su_set:
                su_set[k] = 0
            su_set[k] += 1
    return su_set


def _split_into_words(sentences):
    """Splits multiple sentences into words and flattens the result"""
    return list(itertools.chain(*[_.split(" ") for _ in sentences]))


def _get_word_ngrams(n, sentences):
    """Calculates word n-grams for multiple sentences."""
    assert len(sentences) > 0
    assert n > 0

    words = _split_into_words(sentences)
    return _get_ngrams(n, words)


def _get_word_su(dist, sentences):
    """Calculates word skip-dist-grams for multiple sentences."""
    assert len(sentences) > 0
    assert dist > 0

    words = _split_into_words(sentences)
    return _get_su(dist, words)


def _len_lcs(x, y):
    """
    Returns the length of the Longest Common Subsequence between sequences x
    and y.
    Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence

    Args:
      x: sequence of words
      y: sequence of words

    Returns
      integer: Length of LCS between x and y
    """
    table = _lcs(x, y)
    n, m = len(x), len(y)
    return table[n, m]


def _lcs(x, y):
    """
    Computes the length of the longest common subsequence (lcs) between two
    strings. The implementation below uses a DP programming algorithm and runs
    in O(nm) time where n = len(x) and m = len(y).
    Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence

    Args:
      x: collection of words
      y: collection of words

    Returns:
      Table of dictionary of coord and len lcs
    """
    n, m = len(x), len(y)
    table = dict()
    for i in range(n + 1):
        for j in range(m + 1):
            if i == 0 or j == 0:
                table[i, j] = 0
            elif x[i - 1] == y[j - 1]:
                table[i, j] = table[i - 1, j - 1] + 1
            else:
                table[i, j] = max(table[i - 1, j], table[i, j - 1])
    return table


def _recon_lcs(x, y):
    """
    Returns the Longest Subsequence between x and y.
    Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence

    Args:
      x: sequence of words
      y: sequence of words

    Returns:
      sequence: LCS of x and y
    """
    i, j = len(x), len(y)
    table = _lcs(x, y)

    def _recon(i, j):
        """private recon calculation"""
        if i == 0 or j == 0:
            return []
        elif x[i - 1] == y[j - 1]:
            return _recon(i - 1, j - 1) + [(x[i - 1], i)]
        elif table[i - 1, j] > table[i, j - 1]:
            return _recon(i - 1, j)
        else:
            return _recon(i, j - 1)

    recon_tuple = tuple(map(lambda x: x[0], _recon(i, j)))
    return recon_tuple


def rouge_su(evaluated_sentences, reference_sentences, dist=4):
    """
    Computes ROUGE-SU_dist of two text collections of sentences.
    Sourece: http://research.microsoft.com/en-us/um/people/cyl/download/
    papers/rouge-working-note-v1.3.1.pdf

    Args:
      evaluated_sentences: The sentences that have been picked by the summarizer
      reference_sentences: The sentences from the referene set
      n: maximum distance between two tokens.  Defaults to 4.

    Returns:
      A tuple (f1, precision, recall) for ROUGE-SU4

    Raises:
      ValueError: raises exception if a param has len <= 0
    """
    return rouge_n(evaluated_sentences, reference_sentences, dist=dist, su=True)


def rouge_n(evaluated_sentences, reference_sentences, n=2, dist=4, su=False):
    """
    Computes ROUGE-N of two text collections of sentences.
    Sourece: http://research.microsoft.com/en-us/um/people/cyl/download/
    papers/rouge-working-note-v1.3.1.pdf

    Args:
      evaluated_sentences: The sentences that have been picked by the summarizer
      reference_sentences: The sentences from the referene set
      n: Size of ngram.  Defaults to 2.
      su: if true, we are computing rouge_su

    Returns:
      A tuple (f1, precision, recall) for ROUGE-N

    Raises:
      ValueError: raises exception if a param has len <= 0
    """
    if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0:
        raise ValueError("Collections must contain at least 1 sentence.")

    if su == True:
        evaluated_ngrams = _get_word_su(dist, evaluated_sentences)
        reference_ngrams = _get_word_su(dist, reference_sentences)
    else:
        evaluated_ngrams = _get_word_ngrams(n, evaluated_sentences)
        reference_ngrams = _get_word_ngrams(n, reference_sentences)

    reference_count = sum([v for k, v in reference_ngrams.items()])
    evaluated_count = sum([v for k, v in evaluated_ngrams.items()])

    # Gets the overlapping ngrams between evaluated and reference
    overlapping_count = 0
    for k, v in reference_ngrams.items():
        if k in evaluated_ngrams:
            if evaluated_ngrams[k] < v:
                overlapping_count += evaluated_ngrams[k]
            else:
                overlapping_count += v

    # Handle edge case. This isn't mathematically correct, but it's good enough
    if evaluated_count == 0:
        precision = 0.0
    else:
        precision = overlapping_count / evaluated_count

    if reference_count == 0:
        recall = 0.0
    else:
        recall = overlapping_count / reference_count

    f1_score = 2.0 * ((precision * recall) / (precision + recall + 1e-8))

    # return overlapping_count / reference_count
    return f1_score, precision, recall


def _f_p_r_lcs(llcs, m, n):
    """
    Computes the LCS-based F-measure score
    Source: http://research.microsoft.com/en-us/um/people/cyl/download/papers/
    rouge-working-note-v1.3.1.pdf

    Args:
      llcs: Length of LCS
      m: number of words in reference summary
      n: number of words in candidate summary

    Returns:
      Float. LCS-based F-measure score
    """
    r_lcs = llcs / m
    p_lcs = llcs / n
    beta = p_lcs / (r_lcs + 1e-12)
    num = (1 + (beta ** 2)) * r_lcs * p_lcs
    denom = r_lcs + ((beta ** 2) * p_lcs)
    f_lcs = num / (denom + 1e-12)
    return f_lcs, p_lcs, r_lcs


def rouge_l_sentence_level(evaluated_sentences, reference_sentences):
    """
    Computes ROUGE-L (sentence level) of two text collections of sentences.
    http://research.microsoft.com/en-us/um/people/cyl/download/papers/
    rouge-working-note-v1.3.1.pdf

    Calculated according to:
    R_lcs = LCS(X,Y)/m
    P_lcs = LCS(X,Y)/n
    F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs)

    where:
    X = reference summary
    Y = Candidate summary
    m = length of reference summary
    n = length of candidate summary

    Args:
      evaluated_sentences: The sentences that have been picked by the summarizer
      reference_sentences: The sentences from the referene set

    Returns:
      A float: F_lcs

    Raises:
      ValueError: raises exception if a param has len <= 0
    """
    if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0:
        raise ValueError("Collections must contain at least 1 sentence.")
    reference_words = _split_into_words(reference_sentences)
    evaluated_words = _split_into_words(evaluated_sentences)
    m = len(reference_words)
    n = len(evaluated_words)
    lcs = _len_lcs(evaluated_words, reference_words)
    return _f_p_r_lcs(lcs, m, n)


def _union_lcs(evaluated_sentences, reference_sentence):
    """
    Returns LCS_u(r_i, C) which is the LCS score of the union longest common
    subsequence between reference sentence ri and candidate summary C. For example
    if r_i= w1 w2 w3 w4 w5, and C contains two sentences: c1 = w1 w2 w6 w7 w8 and
    c2 = w1 w3 w8 w9 w5, then the longest common subsequence of r_i and c1 is
    “w1 w2” and the longest common subsequence of r_i and c2 is “w1 w3 w5”. The
    union longest common subsequence of r_i, c1, and c2 is “w1 w2 w3 w5” and
    LCS_u(r_i, C) = 4/5.

    Args:
      evaluated_sentences: The sentences that have been picked by the summarizer
      reference_sentence: One of the sentences in the reference summaries

    Returns:
      float: LCS_u(r_i, C)

    ValueError:
      Raises exception if a param has len <= 0
    """
    if len(evaluated_sentences) <= 0:
        raise ValueError("Collections must contain at least 1 sentence.")

    lcs_union = set()
    reference_words = _split_into_words([reference_sentence])
    combined_lcs_length = 0
    for eval_s in evaluated_sentences:
        evaluated_words = _split_into_words([eval_s])
        lcs = set(_recon_lcs(reference_words, evaluated_words))
        combined_lcs_length += len(lcs)
        lcs_union = lcs_union.union(lcs)

    union_lcs_count = len(lcs_union)
    union_lcs_value = union_lcs_count / combined_lcs_length
    return union_lcs_value


def rouge_l_summary_level(evaluated_sentences, reference_sentences):
    """
    Computes ROUGE-L (summary level) of two text collections of sentences.
    http://research.microsoft.com/en-us/um/people/cyl/download/papers/
    rouge-working-note-v1.3.1.pdf

    Calculated according to:
    R_lcs = SUM(1, u)[LCS<union>(r_i,C)]/m
    P_lcs = SUM(1, u)[LCS<union>(r_i,C)]/n
    F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs)

    where:
    SUM(i,u) = SUM from i through u
    u = number of sentences in reference summary
    C = Candidate summary made up of v sentences
    m = number of words in reference summary
    n = number of words in candidate summary

    Args:
      evaluated_sentences: The sentences that have been picked by the summarizer
      reference_sentence: One of the sentences in the reference summaries

    Returns:
      A float: F_lcs

    Raises:
      ValueError: raises exception if a param has len <= 0
    """
    if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0:
        raise ValueError("Collections must contain at least 1 sentence.")

    # total number of words in reference sentences
    m = len(_split_into_words(reference_sentences))

    # total number of words in evaluated sentences
    n = len(_split_into_words(evaluated_sentences))

    union_lcs_sum_across_all_references = 0
    for ref_s in reference_sentences:
        union_lcs_sum_across_all_references += _union_lcs(evaluated_sentences, ref_s)
    return _f_p_r_lcs(union_lcs_sum_across_all_references, m, n)


def rouge(hypotheses, references):
    """Calculates average rouge scores for a list of hypotheses and
    references"""

    # Filter out hyps that are of 0 length
    # hyps_and_refs = zip(hypotheses, references)
    # hyps_and_refs = [_ for _ in hyps_and_refs if len(_[0]) > 0]
    # hypotheses, references = zip(*hyps_and_refs)

    # Calculate ROUGE-1 F1, precision, recall scores
    rouge_1 = [rouge_n([hyp], [ref], 1) for hyp, ref in zip(hypotheses, references)]
    rouge_1_f, rouge_1_p, rouge_1_r = map(np.mean, zip(*rouge_1))

    # Calculate ROUGE-2 F1, precision, recall scores
    rouge_2 = [rouge_n([hyp], [ref], 2) for hyp, ref in zip(hypotheses, references)]
    rouge_2_f, rouge_2_p, rouge_2_r = map(np.mean, zip(*rouge_2))

    # Calculate ROUGE-SU4 F1, precision, recall scores
    rouge_su4 = [rouge_su([hyp], [ref], 4) for hyp, ref in zip(hypotheses, references)]
    rouge_su4_f, rouge_su4_p, rouge_su4_r = map(np.mean, zip(*rouge_su4))

    # Calculate ROUGE-L F1, precision, recall scores
    rouge_l = [
        rouge_l_sentence_level([hyp], [ref]) for hyp, ref in zip(hypotheses, references)
    ]
    rouge_l_f, rouge_l_p, rouge_l_r = map(np.mean, zip(*rouge_l))

    return {
        "rouge_1_f_score": rouge_1_f,
        "rouge_2_f_score": rouge_2_f,
        "rouge_su4_f_score": rouge_su4_f,
        "rouge_l_f_score": rouge_l_f,
    }


class OldROUGEEval:
    def __init__(self):
        pass

    def make_html_safe(self, s):
        s.replace("<", "&lt;")
        s.replace(">", "&gt;")
        return s

    def eval(self, predictions, groundtruths):
        predictions = [self.make_html_safe(w) for w in predictions]
        groundtruths = [self.make_html_safe(w) for w in groundtruths]
        results = rouge(predictions, groundtruths)
        return results