Spaces:
Build error
Build error
File size: 13,456 Bytes
546a9ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
"""ROUGe metric implementation.
This is a modified and slightly extended verison of
https://github.com/miso-belica/sumy/blob/dev/sumy/evaluation/rouge.py.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import itertools
import numpy as np
# pylint: disable=C0103
def _get_ngrams(n, text):
"""Calcualtes n-grams.
Args:
n: which n-grams to calculate
text: An array of tokens
Returns:
A set of n-grams
"""
ngram_set = {}
text_length = len(text)
max_index_ngram_start = text_length - n
for i in range(max_index_ngram_start + 1):
k = " ".join(text[i : i + n])
if k not in ngram_set:
ngram_set[k] = 0
ngram_set[k] += 1
return ngram_set
def _get_su(dist, text):
"""Calcualtes skip-grams and unigram
Args:
n: which n-grams to calculate
text: An array of tokens
Returns:
A set of n-grams
"""
su_set = {}
text_length = len(text)
for i in range(text_length):
k = text[i]
if k not in su_set:
su_set[k] = 0
su_set[k] += 1
for j in range(i + 1, text_length):
if j - i - 1 > dist:
break
k = text[i] + " " + text[j]
if k not in su_set:
su_set[k] = 0
su_set[k] += 1
return su_set
def _split_into_words(sentences):
"""Splits multiple sentences into words and flattens the result"""
return list(itertools.chain(*[_.split(" ") for _ in sentences]))
def _get_word_ngrams(n, sentences):
"""Calculates word n-grams for multiple sentences."""
assert len(sentences) > 0
assert n > 0
words = _split_into_words(sentences)
return _get_ngrams(n, words)
def _get_word_su(dist, sentences):
"""Calculates word skip-dist-grams for multiple sentences."""
assert len(sentences) > 0
assert dist > 0
words = _split_into_words(sentences)
return _get_su(dist, words)
def _len_lcs(x, y):
"""
Returns the length of the Longest Common Subsequence between sequences x
and y.
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
Args:
x: sequence of words
y: sequence of words
Returns
integer: Length of LCS between x and y
"""
table = _lcs(x, y)
n, m = len(x), len(y)
return table[n, m]
def _lcs(x, y):
"""
Computes the length of the longest common subsequence (lcs) between two
strings. The implementation below uses a DP programming algorithm and runs
in O(nm) time where n = len(x) and m = len(y).
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
Args:
x: collection of words
y: collection of words
Returns:
Table of dictionary of coord and len lcs
"""
n, m = len(x), len(y)
table = dict()
for i in range(n + 1):
for j in range(m + 1):
if i == 0 or j == 0:
table[i, j] = 0
elif x[i - 1] == y[j - 1]:
table[i, j] = table[i - 1, j - 1] + 1
else:
table[i, j] = max(table[i - 1, j], table[i, j - 1])
return table
def _recon_lcs(x, y):
"""
Returns the Longest Subsequence between x and y.
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
Args:
x: sequence of words
y: sequence of words
Returns:
sequence: LCS of x and y
"""
i, j = len(x), len(y)
table = _lcs(x, y)
def _recon(i, j):
"""private recon calculation"""
if i == 0 or j == 0:
return []
elif x[i - 1] == y[j - 1]:
return _recon(i - 1, j - 1) + [(x[i - 1], i)]
elif table[i - 1, j] > table[i, j - 1]:
return _recon(i - 1, j)
else:
return _recon(i, j - 1)
recon_tuple = tuple(map(lambda x: x[0], _recon(i, j)))
return recon_tuple
def rouge_su(evaluated_sentences, reference_sentences, dist=4):
"""
Computes ROUGE-SU_dist of two text collections of sentences.
Sourece: http://research.microsoft.com/en-us/um/people/cyl/download/
papers/rouge-working-note-v1.3.1.pdf
Args:
evaluated_sentences: The sentences that have been picked by the summarizer
reference_sentences: The sentences from the referene set
n: maximum distance between two tokens. Defaults to 4.
Returns:
A tuple (f1, precision, recall) for ROUGE-SU4
Raises:
ValueError: raises exception if a param has len <= 0
"""
return rouge_n(evaluated_sentences, reference_sentences, dist=dist, su=True)
def rouge_n(evaluated_sentences, reference_sentences, n=2, dist=4, su=False):
"""
Computes ROUGE-N of two text collections of sentences.
Sourece: http://research.microsoft.com/en-us/um/people/cyl/download/
papers/rouge-working-note-v1.3.1.pdf
Args:
evaluated_sentences: The sentences that have been picked by the summarizer
reference_sentences: The sentences from the referene set
n: Size of ngram. Defaults to 2.
su: if true, we are computing rouge_su
Returns:
A tuple (f1, precision, recall) for ROUGE-N
Raises:
ValueError: raises exception if a param has len <= 0
"""
if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0:
raise ValueError("Collections must contain at least 1 sentence.")
if su == True:
evaluated_ngrams = _get_word_su(dist, evaluated_sentences)
reference_ngrams = _get_word_su(dist, reference_sentences)
else:
evaluated_ngrams = _get_word_ngrams(n, evaluated_sentences)
reference_ngrams = _get_word_ngrams(n, reference_sentences)
reference_count = sum([v for k, v in reference_ngrams.items()])
evaluated_count = sum([v for k, v in evaluated_ngrams.items()])
# Gets the overlapping ngrams between evaluated and reference
overlapping_count = 0
for k, v in reference_ngrams.items():
if k in evaluated_ngrams:
if evaluated_ngrams[k] < v:
overlapping_count += evaluated_ngrams[k]
else:
overlapping_count += v
# Handle edge case. This isn't mathematically correct, but it's good enough
if evaluated_count == 0:
precision = 0.0
else:
precision = overlapping_count / evaluated_count
if reference_count == 0:
recall = 0.0
else:
recall = overlapping_count / reference_count
f1_score = 2.0 * ((precision * recall) / (precision + recall + 1e-8))
# return overlapping_count / reference_count
return f1_score, precision, recall
def _f_p_r_lcs(llcs, m, n):
"""
Computes the LCS-based F-measure score
Source: http://research.microsoft.com/en-us/um/people/cyl/download/papers/
rouge-working-note-v1.3.1.pdf
Args:
llcs: Length of LCS
m: number of words in reference summary
n: number of words in candidate summary
Returns:
Float. LCS-based F-measure score
"""
r_lcs = llcs / m
p_lcs = llcs / n
beta = p_lcs / (r_lcs + 1e-12)
num = (1 + (beta ** 2)) * r_lcs * p_lcs
denom = r_lcs + ((beta ** 2) * p_lcs)
f_lcs = num / (denom + 1e-12)
return f_lcs, p_lcs, r_lcs
def rouge_l_sentence_level(evaluated_sentences, reference_sentences):
"""
Computes ROUGE-L (sentence level) of two text collections of sentences.
http://research.microsoft.com/en-us/um/people/cyl/download/papers/
rouge-working-note-v1.3.1.pdf
Calculated according to:
R_lcs = LCS(X,Y)/m
P_lcs = LCS(X,Y)/n
F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs)
where:
X = reference summary
Y = Candidate summary
m = length of reference summary
n = length of candidate summary
Args:
evaluated_sentences: The sentences that have been picked by the summarizer
reference_sentences: The sentences from the referene set
Returns:
A float: F_lcs
Raises:
ValueError: raises exception if a param has len <= 0
"""
if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0:
raise ValueError("Collections must contain at least 1 sentence.")
reference_words = _split_into_words(reference_sentences)
evaluated_words = _split_into_words(evaluated_sentences)
m = len(reference_words)
n = len(evaluated_words)
lcs = _len_lcs(evaluated_words, reference_words)
return _f_p_r_lcs(lcs, m, n)
def _union_lcs(evaluated_sentences, reference_sentence):
"""
Returns LCS_u(r_i, C) which is the LCS score of the union longest common
subsequence between reference sentence ri and candidate summary C. For example
if r_i= w1 w2 w3 w4 w5, and C contains two sentences: c1 = w1 w2 w6 w7 w8 and
c2 = w1 w3 w8 w9 w5, then the longest common subsequence of r_i and c1 is
“w1 w2” and the longest common subsequence of r_i and c2 is “w1 w3 w5”. The
union longest common subsequence of r_i, c1, and c2 is “w1 w2 w3 w5” and
LCS_u(r_i, C) = 4/5.
Args:
evaluated_sentences: The sentences that have been picked by the summarizer
reference_sentence: One of the sentences in the reference summaries
Returns:
float: LCS_u(r_i, C)
ValueError:
Raises exception if a param has len <= 0
"""
if len(evaluated_sentences) <= 0:
raise ValueError("Collections must contain at least 1 sentence.")
lcs_union = set()
reference_words = _split_into_words([reference_sentence])
combined_lcs_length = 0
for eval_s in evaluated_sentences:
evaluated_words = _split_into_words([eval_s])
lcs = set(_recon_lcs(reference_words, evaluated_words))
combined_lcs_length += len(lcs)
lcs_union = lcs_union.union(lcs)
union_lcs_count = len(lcs_union)
union_lcs_value = union_lcs_count / combined_lcs_length
return union_lcs_value
def rouge_l_summary_level(evaluated_sentences, reference_sentences):
"""
Computes ROUGE-L (summary level) of two text collections of sentences.
http://research.microsoft.com/en-us/um/people/cyl/download/papers/
rouge-working-note-v1.3.1.pdf
Calculated according to:
R_lcs = SUM(1, u)[LCS<union>(r_i,C)]/m
P_lcs = SUM(1, u)[LCS<union>(r_i,C)]/n
F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs)
where:
SUM(i,u) = SUM from i through u
u = number of sentences in reference summary
C = Candidate summary made up of v sentences
m = number of words in reference summary
n = number of words in candidate summary
Args:
evaluated_sentences: The sentences that have been picked by the summarizer
reference_sentence: One of the sentences in the reference summaries
Returns:
A float: F_lcs
Raises:
ValueError: raises exception if a param has len <= 0
"""
if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0:
raise ValueError("Collections must contain at least 1 sentence.")
# total number of words in reference sentences
m = len(_split_into_words(reference_sentences))
# total number of words in evaluated sentences
n = len(_split_into_words(evaluated_sentences))
union_lcs_sum_across_all_references = 0
for ref_s in reference_sentences:
union_lcs_sum_across_all_references += _union_lcs(evaluated_sentences, ref_s)
return _f_p_r_lcs(union_lcs_sum_across_all_references, m, n)
def rouge(hypotheses, references):
"""Calculates average rouge scores for a list of hypotheses and
references"""
# Filter out hyps that are of 0 length
# hyps_and_refs = zip(hypotheses, references)
# hyps_and_refs = [_ for _ in hyps_and_refs if len(_[0]) > 0]
# hypotheses, references = zip(*hyps_and_refs)
# Calculate ROUGE-1 F1, precision, recall scores
rouge_1 = [rouge_n([hyp], [ref], 1) for hyp, ref in zip(hypotheses, references)]
rouge_1_f, rouge_1_p, rouge_1_r = map(np.mean, zip(*rouge_1))
# Calculate ROUGE-2 F1, precision, recall scores
rouge_2 = [rouge_n([hyp], [ref], 2) for hyp, ref in zip(hypotheses, references)]
rouge_2_f, rouge_2_p, rouge_2_r = map(np.mean, zip(*rouge_2))
# Calculate ROUGE-SU4 F1, precision, recall scores
rouge_su4 = [rouge_su([hyp], [ref], 4) for hyp, ref in zip(hypotheses, references)]
rouge_su4_f, rouge_su4_p, rouge_su4_r = map(np.mean, zip(*rouge_su4))
# Calculate ROUGE-L F1, precision, recall scores
rouge_l = [
rouge_l_sentence_level([hyp], [ref]) for hyp, ref in zip(hypotheses, references)
]
rouge_l_f, rouge_l_p, rouge_l_r = map(np.mean, zip(*rouge_l))
return {
"rouge_1_f_score": rouge_1_f,
"rouge_2_f_score": rouge_2_f,
"rouge_su4_f_score": rouge_su4_f,
"rouge_l_f_score": rouge_l_f,
}
class OldROUGEEval:
def __init__(self):
pass
def make_html_safe(self, s):
s.replace("<", "<")
s.replace(">", ">")
return s
def eval(self, predictions, groundtruths):
predictions = [self.make_html_safe(w) for w in predictions]
groundtruths = [self.make_html_safe(w) for w in groundtruths]
results = rouge(predictions, groundtruths)
return results
|