# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import re import shutil from string import ascii_uppercase from tqdm.auto import tqdm from model.third_party.HMNet.Evaluation.OldROUGEEval import rouge from model.third_party.HMNet.ThirdParty.ROUGE import pyrouge from shutil import copyfile from mpi4py import MPI import torch import logging import json def write_json_res( output_file, tokenizers, x_ids, y_ids, x_tokens, y_tokens, predictions, gts ): data = [] # for x_id, y_id, x_token, y_token, preds, gt in zip(x_ids, y_ids, x_tokens, y_tokens, predictions, gts): # x_id = tokenizers[0].decode(x_id, skip_special_tokens=False) if x_id.dim() == 1 else tokenizers[0].convert_tokens_to_string(x_token) # y_id = tokenizers[1].decode(y_id, skip_special_tokens=False) if y_id.dim() == 1 else tokenizers[1].convert_tokens_to_string(y_token) for x_token, y_token, preds, gt in zip(x_tokens, y_tokens, predictions, gts): data.append( { # 'x_ids': x_id, # 'y_ids': y_id, "x_tokens": x_token if isinstance(x_token, str) else " ".join(x_token), "y_tokens": y_token if isinstance(y_token, str) else " ".join(y_token), "predictions": preds, "gt": gt, } ) json.dump(data, output_file, indent=4, ensure_ascii=False) logger = logging.getLogger(__name__) """ This code can only be run within docker "rouge", because of the usage of rouge-perl """ """" In ROUGE parlance, your summaries are ‘system’ summaries and the gold standard summaries are ‘model’ summaries. The summaries should be in separate folders, whose paths are set with the system_dir and model_dir variables. All summaries should contain one sentence per line.""" class ROUGEEval: """ Wrapper class for pyrouge. Compute ROUGE given predictions and references for summarization evaluation. """ def __init__(self, run_dir, save_dir, opt): self.run_dir = run_dir self.save_dir = save_dir self.opt = opt # use relative path to make it work on Philly self.pyrouge_dir = os.path.join( os.path.dirname(__file__), "../ThirdParty/ROUGE/ROUGE-1.5.5/" ) self.eval_batches_num = self.opt.get("EVAL_BATCHES_NUM", float("Inf")) self.best_score = -float("Inf") self.best_res = {} def reset_best_score(self, set_high=False): if set_high: self.best_score = float("Inf") else: self.best_score = -float("Inf") def make_html_safe(self, s): s = s.replace("<", "<") s = s.replace(">", ">") return s def print_to_rouge_dir( self, summaries, dir, suffix, split_chars, special_char_dict=None ): for idx, summary in enumerate(summaries): fname = os.path.join(dir, "%06d_%s.txt" % (idx, suffix)) with open(fname, "wb") as f: sents = re.split(r"(?') # else: # new_predicitons.append(pred) # return new_predicitons, new_groundtruths def _convert_tokens_to_string(self, tokenizer, tokens): if "EVAL_TOKENIZED" in self.opt: tokens = [t for t in tokens if t not in tokenizer.all_special_tokens] if "EVAL_LOWERCASE" in self.opt: tokens = [t.lower() for t in tokens] if "EVAL_TOKENIZED" in self.opt: return " ".join(tokens) else: return tokenizer.decode( tokenizer.convert_tokens_to_ids(tokens), skip_special_tokens=True ) def eval_batches(self, module, dev_batches, save_folder, label=""): max_sent_len = int(self.opt["MAX_GEN_LENGTH"]) logger.info( "Decoding current model ... \nSaving folder is {}".format(save_folder) ) predictions = [] # prediction of tokens from model x_tokens = [] # input tokens y_tokens = [] # groundtruths tokens x_ids = [] # input token ids y_ids = [] # groundtruths token ids gts = [] # groundtruths string got_better_score = False # err = 0 if not isinstance(module.tokenizer, list): encoder_tokenizer = module.tokenizer decoder_tokenizer = module.tokenizer elif len(module.tokenizer) == 1: encoder_tokenizer = module.tokenizer[0] decoder_tokenizer = module.tokenizer[0] elif len(module.tokenizer) == 2: encoder_tokenizer = module.tokenizer[0] decoder_tokenizer = module.tokenizer[1] else: assert False, f"len(module.tokenizer) > 2" with torch.no_grad(): for j, dev_batch in enumerate(dev_batches): for b in dev_batch: if torch.is_tensor(dev_batch[b]): dev_batch[b] = dev_batch[b].to(self.opt["device"]) beam_search_res = module( dev_batch, beam_search=True, max_sent_len=max_sent_len ) pred = [ [t[0] for t in x] if len(x) > 0 else [[]] for x in beam_search_res ] predictions.extend( [ [ self._convert_tokens_to_string(decoder_tokenizer, tt) for tt in t ] for t in pred ] ) gts.extend( [ self._convert_tokens_to_string(decoder_tokenizer, t) for t in dev_batch["decoder_tokens"] ] ) x_tokens.extend(dev_batch["encoder_tokens"]) y_tokens.extend(dev_batch["decoder_tokens"]) if ("DEBUG" in self.opt and j >= 10) or j >= self.eval_batches_num: # in debug mode (decode first 10 batches) ortherwise decode first self.eval_batches_num bathes break # use MPI to gather results from all processes / GPUs # the result of the gather operation is a list of sublists # each sublist corresponds to the list created on one of the MPI processes (or GPUs, respectively) # we flatten this list into a "simple" list assert len(predictions) == len( gts ), "len(predictions): {0}, len(gts): {1}".format(len(predictions), len(gts)) comm = MPI.COMM_WORLD predictions = comm.gather(predictions, root=0) x_tokens = comm.gather(x_tokens, root=0) y_tokens = comm.gather(y_tokens, root=0) # if GPU numbers are high (>=8), passing x_ids, y_ids to a rank 0 will cause out of memory # x_ids = comm.gather(x_ids, root=0) # y_ids = comm.gather(y_ids, root=0) gts = comm.gather(gts, root=0) if self.opt["rank"] == 0: # flatten lists predictions = [item for sublist in predictions for item in sublist] y_tokens = [item for sublist in y_tokens for item in sublist] x_tokens = [item for sublist in x_tokens for item in sublist] # x_ids = [item for sublist in x_ids for item in sublist] # y_ids = [item for sublist in y_ids for item in sublist] gts = [item for sublist in gts for item in sublist] # import pdb; pdb.set_trace() assert ( len(predictions) == len(y_tokens) == len(x_tokens) == len(gts) ), "len(predictions): {0}, len(y_tokens): {1}, len(x_tokens): {2}, len(gts): {3}".format( len(predictions), len(y_tokens), len(x_tokens), len(gts) ) # write intermediate results only on rank 0 if not os.path.isdir(os.path.join(save_folder, "intermediate_results")): os.makedirs(os.path.join(save_folder, "intermediate_results")) top_1_predictions = [pred[0] for pred in predictions] with open( os.path.join( save_folder, "intermediate_results", "res_" + label + ".json" ), "w", encoding="utf-8", ) as output_file: write_json_res( output_file, [encoder_tokenizer, decoder_tokenizer], x_ids, y_ids, x_tokens, y_tokens, predictions, gts, ) try: result = self.eval(top_1_predictions, gts) except Exception as e: logger.exception("ROUGE Eval ERROR") result = {} score = -float("Inf") pass # this happens when no overlapping between pred and gts else: rouge_su4 = rouge(top_1_predictions, gts) # f, prec, recall result = { "ROUGE_1": result["rouge_1_f_score"] * 100.0, "ROUGE_1_Prc": result["rouge_1_precision"] * 100.0, "ROUGE_1_Rcl": result["rouge_1_recall"] * 100.0, "ROUGE_2": result["rouge_2_f_score"] * 100.0, "ROUGE_2_Prc": result["rouge_2_precision"] * 100.0, "ROUGE_2_Rcl": result["rouge_2_recall"] * 100.0, "ROUGE_L": result["rouge_l_f_score"] * 100.0, "ROUGE_L_Prc": result["rouge_l_precision"] * 100.0, "ROUGE_L_Rcl": result["rouge_l_recall"] * 100.0, "ROUGE_SU4": rouge_su4["rouge_su4_f_score"] * 100.0, } score = result["ROUGE_1"] if score > self.best_score: copyfile( os.path.join( save_folder, "intermediate_results", "res_" + label + ".json", ), os.path.join( save_folder, "intermediate_results", "res_" + label + ".best.json", ), ) self.best_score = score self.best_res = result got_better_score = True else: result = {} score = -float("Inf") got_better_score = False return result, score, got_better_score def eval(self, predictions, groundtruths): # predictions, groundtruths = self.filter_empty(predictions, groundtruths) predictions = [self.make_html_safe(w) for w in predictions] groundtruths = [self.make_html_safe(w) for w in groundtruths] pred_dir = os.path.join(self.save_dir, "predictions") if os.path.exists(pred_dir): shutil.rmtree(pred_dir) os.makedirs(pred_dir) gt_dir = os.path.join(self.save_dir, "groundtruths") if os.path.exists(gt_dir): shutil.rmtree(gt_dir) os.makedirs(gt_dir) special_char_dict = self.print_to_rouge_dir_gt( groundtruths, gt_dir, "gt", "SPLIT_CHARS_FOR_EVAL" in self.opt ) self.print_to_rouge_dir( predictions, pred_dir, "pred", "SPLIT_CHARS_FOR_EVAL" in self.opt, special_char_dict, ) r = pyrouge.Rouge155(self.pyrouge_dir) r.system_dir = pred_dir r.model_dir = gt_dir r.system_filename_pattern = "(\d+)_pred.txt" r.model_filename_pattern = "[A-Z].#ID#_gt.txt" results = r.output_to_dict(r.convert_and_evaluate()) return results