File size: 7,134 Bytes
06a6e91
eacc26a
6123d43
 
 
e7f513f
06a6e91
6123d43
 
eacc26a
6123d43
 
eacc26a
 
 
 
 
836daad
6123d43
eacc26a
836daad
eacc26a
6123d43
30994c1
eacc26a
30994c1
6123d43
836daad
 
 
 
 
 
6123d43
 
836daad
eacc26a
 
 
6123d43
 
 
 
 
 
 
 
 
 
eacc26a
6123d43
eacc26a
a361f34
6123d43
eacc26a
836daad
a361f34
2cde650
6123d43
30994c1
2cde650
30994c1
2cde650
e7f513f
eacc26a
836daad
a361f34
e7f513f
 
 
2cde650
6123d43
 
e7f513f
 
 
 
 
 
 
 
 
 
 
6123d43
eacc26a
 
 
 
 
 
 
 
 
 
 
e7f513f
6123d43
eacc26a
836daad
eacc26a
6123d43
30994c1
eacc26a
30994c1
6123d43
836daad
 
 
e7f513f
836daad
 
6123d43
 
836daad
eacc26a
 
 
6123d43
 
 
 
 
 
 
 
 
 
2cde650
e7f513f
 
 
6123d43
30994c1
2cde650
30994c1
a361f34
e7f513f
 
 
 
 
 
06a6e91
eacc26a
06a6e91
eacc26a
06a6e91
eacc26a
 
 
 
836daad
2cde650
eacc26a
 
 
 
 
 
 
836daad
eacc26a
2cde650
eacc26a
 
e7f513f
eacc26a
 
836daad
eacc26a
 
 
 
 
 
 
e7f513f
836daad
eacc26a
57e4050
30994c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
import os
from lumaai import AsyncLumaAI
import asyncio
import aiohttp
import tempfile

async def generate_video(api_key, prompt, loop=False, aspect_ratio="16:9", progress=gr.Progress()):
    client = AsyncLumaAI(auth_token=api_key)
    
    progress(0, desc="Initiating video generation...")
    generation = await client.generations.create(
        prompt=prompt,
        loop=loop,
        aspect_ratio=aspect_ratio
    )
    
    progress(0.1, desc="Video generation started. Waiting for completion...")
    
    # Poll for completion
    start_time = asyncio.get_event_loop().time()
    while True:
        status = await client.generations.get(id=generation.id)
        if status.state == "completed":
            break
        elif status.state == "failed":
            raise Exception("Video generation failed")
        
        # Update progress based on time elapsed (assuming 60 seconds total)
        elapsed_time = asyncio.get_event_loop().time() - start_time
        progress_value = min(0.1 + (elapsed_time / 60) * 0.8, 0.9)
        progress(progress_value, desc="Generating video...")
        
        await asyncio.sleep(5)

    progress(0.9, desc="Downloading generated video...")
    
    # Download the video
    video_url = status.assets.video
    async with aiohttp.ClientSession() as session:
        async with session.get(video_url) as resp:
            if resp.status == 200:
                file_name = f"luma_ai_generated_{generation.id}.mp4"
                with open(file_name, 'wb') as fd:
                    while True:
                        chunk = await resp.content.read(1024)
                        if not chunk:
                            break
                        fd.write(chunk)
    
    progress(1.0, desc="Video generation complete!")
    return file_name

async def text_to_video(api_key, prompt, loop, aspect_ratio, progress=gr.Progress()):
    if not api_key:
        raise gr.Error("Please enter your Luma AI API key.")
    
    try:
        video_path = await generate_video(api_key, prompt, loop, aspect_ratio, progress)
        return video_path, ""
    except Exception as e:
        return None, f"An error occurred: {str(e)}"

async def image_to_video(api_key, prompt, image, loop, aspect_ratio, progress=gr.Progress()):
    if not api_key:
        raise gr.Error("Please enter your Luma AI API key.")
    
    if image is None:
        raise gr.Error("Please upload an image.")
    
    try:
        client = AsyncLumaAI(auth_token=api_key)
        
        progress(0, desc="Uploading image...")
        
        # Create a temporary file to store the uploaded image
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            temp_file.write(image)
            temp_file_path = temp_file.name
        
        # Upload the image to Luma AI (you might need to implement this function)
        image_url = await upload_image_to_luma(client, temp_file_path)
        
        progress(0.1, desc="Initiating video generation from image...")
        generation = await client.generations.create(
            prompt=prompt,
            loop=loop,
            aspect_ratio=aspect_ratio,
            keyframes={
                "frame0": {
                    "type": "image",
                    "url": image_url
                }
            }
        )
        
        progress(0.2, desc="Video generation started. Waiting for completion...")
        
        # Poll for completion
        start_time = asyncio.get_event_loop().time()
        while True:
            status = await client.generations.get(id=generation.id)
            if status.state == "completed":
                break
            elif status.state == "failed":
                raise Exception("Video generation failed")
            
            # Update progress based on time elapsed (assuming 60 seconds total)
            elapsed_time = asyncio.get_event_loop().time() - start_time
            progress_value = min(0.2 + (elapsed_time / 60) * 0.7, 0.9)
            progress(progress_value, desc="Generating video...")
            
            await asyncio.sleep(5)

        progress(0.9, desc="Downloading generated video...")
        
        # Download the video
        video_url = status.assets.video
        async with aiohttp.ClientSession() as session:
            async with session.get(video_url) as resp:
                if resp.status == 200:
                    file_name = f"luma_ai_generated_{generation.id}.mp4"
                    with open(file_name, 'wb') as fd:
                        while True:
                            chunk = await resp.content.read(1024)
                            if not chunk:
                                break
                            fd.write(chunk)
        
        # Clean up the temporary file
        os.unlink(temp_file_path)
        
        progress(1.0, desc="Video generation complete!")
        return file_name, ""
    except Exception as e:
        return None, f"An error occurred: {str(e)}"

# You need to implement this function based on Luma AI's API for image uploading
async def upload_image_to_luma(client, image_path):
    # This is a placeholder. You need to implement the actual image upload logic
    # using the Luma AI API. The function should return the URL of the uploaded image.
    raise NotImplementedError("Image upload to Luma AI is not implemented yet.")

with gr.Blocks() as demo:
    gr.Markdown("# Luma AI Text-to-Video Demo")
    
    api_key = gr.Textbox(label="Luma AI API Key", type="password")
    
    with gr.Tab("Text to Video"):
        prompt = gr.Textbox(label="Prompt")
        generate_btn = gr.Button("Generate Video")
        video_output = gr.Video(label="Generated Video")
        error_output = gr.Textbox(label="Error Messages", visible=True)
        
        with gr.Accordion("Advanced Options", open=False):
            loop = gr.Checkbox(label="Loop", value=False)
            aspect_ratio = gr.Dropdown(label="Aspect Ratio", choices=["16:9", "1:1", "9:16", "4:3", "3:4"], value="16:9")
        
        generate_btn.click(
            text_to_video,
            inputs=[api_key, prompt, loop, aspect_ratio],
            outputs=[video_output, error_output]
        )
    
    with gr.Tab("Image to Video"):
        img_prompt = gr.Textbox(label="Prompt")
        img_input = gr.Image(label="Upload Image", type="numpy")
        img_generate_btn = gr.Button("Generate Video from Image")
        img_video_output = gr.Video(label="Generated Video")
        img_error_output = gr.Textbox(label="Error Messages", visible=True)
        
        with gr.Accordion("Advanced Options", open=False):
            img_loop = gr.Checkbox(label="Loop", value=False)
            img_aspect_ratio = gr.Dropdown(label="Aspect Ratio", choices=["16:9", "1:1", "9:16", "4:3", "3:4"], value="16:9")
        
        img_generate_btn.click(
            image_to_video,
            inputs=[api_key, img_prompt, img_input, img_loop, img_aspect_ratio],
            outputs=[img_video_output, img_error_output]
        )

demo.queue().launch(share=True)