Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from modules import prompt_parser, devices | |
from modules.shared import opts | |
def get_target_prompt_token_count(token_count): | |
return math.ceil(max(token_count, 1) / 75) * 75 | |
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): | |
def __init__(self, wrapped, hijack): | |
super().__init__() | |
self.wrapped = wrapped | |
self.hijack = hijack | |
def tokenize(self, texts): | |
raise NotImplementedError | |
def encode_with_transformers(self, tokens): | |
raise NotImplementedError | |
def encode_embedding_init_text(self, init_text, nvpt): | |
raise NotImplementedError | |
def tokenize_line(self, line, used_custom_terms, hijack_comments): | |
if opts.enable_emphasis: | |
parsed = prompt_parser.parse_prompt_attention(line) | |
else: | |
parsed = [[line, 1.0]] | |
tokenized = self.tokenize([text for text, _ in parsed]) | |
fixes = [] | |
remade_tokens = [] | |
multipliers = [] | |
last_comma = -1 | |
for tokens, (text, weight) in zip(tokenized, parsed): | |
i = 0 | |
while i < len(tokens): | |
token = tokens[i] | |
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i) | |
if token == self.comma_token: | |
last_comma = len(remade_tokens) | |
elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack: | |
last_comma += 1 | |
reloc_tokens = remade_tokens[last_comma:] | |
reloc_mults = multipliers[last_comma:] | |
remade_tokens = remade_tokens[:last_comma] | |
length = len(remade_tokens) | |
rem = int(math.ceil(length / 75)) * 75 - length | |
remade_tokens += [self.id_end] * rem + reloc_tokens | |
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults | |
if embedding is None: | |
remade_tokens.append(token) | |
multipliers.append(weight) | |
i += 1 | |
else: | |
emb_len = int(embedding.vec.shape[0]) | |
iteration = len(remade_tokens) // 75 | |
if (len(remade_tokens) + emb_len) // 75 != iteration: | |
rem = (75 * (iteration + 1) - len(remade_tokens)) | |
remade_tokens += [self.id_end] * rem | |
multipliers += [1.0] * rem | |
iteration += 1 | |
fixes.append((iteration, (len(remade_tokens) % 75, embedding))) | |
remade_tokens += [0] * emb_len | |
multipliers += [weight] * emb_len | |
used_custom_terms.append((embedding.name, embedding.checksum())) | |
i += embedding_length_in_tokens | |
token_count = len(remade_tokens) | |
prompt_target_length = get_target_prompt_token_count(token_count) | |
tokens_to_add = prompt_target_length - len(remade_tokens) | |
remade_tokens = remade_tokens + [self.id_end] * tokens_to_add | |
multipliers = multipliers + [1.0] * tokens_to_add | |
return remade_tokens, fixes, multipliers, token_count | |
def process_text(self, texts): | |
used_custom_terms = [] | |
remade_batch_tokens = [] | |
hijack_comments = [] | |
hijack_fixes = [] | |
token_count = 0 | |
cache = {} | |
batch_multipliers = [] | |
for line in texts: | |
if line in cache: | |
remade_tokens, fixes, multipliers = cache[line] | |
else: | |
remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms, hijack_comments) | |
token_count = max(current_token_count, token_count) | |
cache[line] = (remade_tokens, fixes, multipliers) | |
remade_batch_tokens.append(remade_tokens) | |
hijack_fixes.append(fixes) | |
batch_multipliers.append(multipliers) | |
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count | |
def process_text_old(self, texts): | |
id_start = self.id_start | |
id_end = self.id_end | |
maxlen = self.wrapped.max_length # you get to stay at 77 | |
used_custom_terms = [] | |
remade_batch_tokens = [] | |
hijack_comments = [] | |
hijack_fixes = [] | |
token_count = 0 | |
cache = {} | |
batch_tokens = self.tokenize(texts) | |
batch_multipliers = [] | |
for tokens in batch_tokens: | |
tuple_tokens = tuple(tokens) | |
if tuple_tokens in cache: | |
remade_tokens, fixes, multipliers = cache[tuple_tokens] | |
else: | |
fixes = [] | |
remade_tokens = [] | |
multipliers = [] | |
mult = 1.0 | |
i = 0 | |
while i < len(tokens): | |
token = tokens[i] | |
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i) | |
mult_change = self.token_mults.get(token) if opts.enable_emphasis else None | |
if mult_change is not None: | |
mult *= mult_change | |
i += 1 | |
elif embedding is None: | |
remade_tokens.append(token) | |
multipliers.append(mult) | |
i += 1 | |
else: | |
emb_len = int(embedding.vec.shape[0]) | |
fixes.append((len(remade_tokens), embedding)) | |
remade_tokens += [0] * emb_len | |
multipliers += [mult] * emb_len | |
used_custom_terms.append((embedding.name, embedding.checksum())) | |
i += embedding_length_in_tokens | |
if len(remade_tokens) > maxlen - 2: | |
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()} | |
ovf = remade_tokens[maxlen - 2:] | |
overflowing_words = [vocab.get(int(x), "") for x in ovf] | |
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words)) | |
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") | |
token_count = len(remade_tokens) | |
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) | |
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end] | |
cache[tuple_tokens] = (remade_tokens, fixes, multipliers) | |
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers)) | |
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0] | |
remade_batch_tokens.append(remade_tokens) | |
hijack_fixes.append(fixes) | |
batch_multipliers.append(multipliers) | |
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count | |
def forward(self, text): | |
use_old = opts.use_old_emphasis_implementation | |
if use_old: | |
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text) | |
else: | |
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text) | |
self.hijack.comments += hijack_comments | |
if len(used_custom_terms) > 0: | |
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms])) | |
if use_old: | |
self.hijack.fixes = hijack_fixes | |
return self.process_tokens(remade_batch_tokens, batch_multipliers) | |
z = None | |
i = 0 | |
while max(map(len, remade_batch_tokens)) != 0: | |
rem_tokens = [x[75:] for x in remade_batch_tokens] | |
rem_multipliers = [x[75:] for x in batch_multipliers] | |
self.hijack.fixes = [] | |
for unfiltered in hijack_fixes: | |
fixes = [] | |
for fix in unfiltered: | |
if fix[0] == i: | |
fixes.append(fix[1]) | |
self.hijack.fixes.append(fixes) | |
tokens = [] | |
multipliers = [] | |
for j in range(len(remade_batch_tokens)): | |
if len(remade_batch_tokens[j]) > 0: | |
tokens.append(remade_batch_tokens[j][:75]) | |
multipliers.append(batch_multipliers[j][:75]) | |
else: | |
tokens.append([self.id_end] * 75) | |
multipliers.append([1.0] * 75) | |
z1 = self.process_tokens(tokens, multipliers) | |
z = z1 if z is None else torch.cat((z, z1), axis=-2) | |
remade_batch_tokens = rem_tokens | |
batch_multipliers = rem_multipliers | |
i += 1 | |
return z | |
def process_tokens(self, remade_batch_tokens, batch_multipliers): | |
if not opts.use_old_emphasis_implementation: | |
remade_batch_tokens = [[self.id_start] + x[:75] + [self.id_end] for x in remade_batch_tokens] | |
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers] | |
tokens = torch.asarray(remade_batch_tokens).to(devices.device) | |
if self.id_end != self.id_pad: | |
for batch_pos in range(len(remade_batch_tokens)): | |
index = remade_batch_tokens[batch_pos].index(self.id_end) | |
tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad | |
z = self.encode_with_transformers(tokens) | |
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise | |
batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers] | |
batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(devices.device) | |
original_mean = z.mean() | |
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) | |
new_mean = z.mean() | |
z *= original_mean / new_mean | |
return z | |
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase): | |
def __init__(self, wrapped, hijack): | |
super().__init__(wrapped, hijack) | |
self.tokenizer = wrapped.tokenizer | |
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0] | |
self.token_mults = {} | |
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k] | |
for text, ident in tokens_with_parens: | |
mult = 1.0 | |
for c in text: | |
if c == '[': | |
mult /= 1.1 | |
if c == ']': | |
mult *= 1.1 | |
if c == '(': | |
mult *= 1.1 | |
if c == ')': | |
mult /= 1.1 | |
if mult != 1.0: | |
self.token_mults[ident] = mult | |
self.id_start = self.wrapped.tokenizer.bos_token_id | |
self.id_end = self.wrapped.tokenizer.eos_token_id | |
self.id_pad = self.id_end | |
def tokenize(self, texts): | |
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] | |
return tokenized | |
def encode_with_transformers(self, tokens): | |
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) | |
if opts.CLIP_stop_at_last_layers > 1: | |
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers] | |
z = self.wrapped.transformer.text_model.final_layer_norm(z) | |
else: | |
z = outputs.last_hidden_state | |
return z | |
def encode_embedding_init_text(self, init_text, nvpt): | |
embedding_layer = self.wrapped.transformer.text_model.embeddings | |
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"] | |
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0) | |
return embedded | |