File size: 8,160 Bytes
0fbd9ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os 

os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/compressor_full.pt")
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/reverb_full.pt")
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/amp_full.pt")
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/delay_full.pt")
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/delay_full.pt")

import sys
import math
import torch
import librosa.display
import auraloss
import torchaudio
import numpy as np
import scipy.signal
from tqdm.notebook import tqdm
from time import sleep
import pyloudnorm as pyln

def measure_rt60(h, fs=1, decay_db=30, rt60_tgt=None):
    """
    Analyze the RT60 of an impulse response.
    Args:
        h (ndarray): The discrete time impulse response as 1d array.
        fs (float, optional): Sample rate of the impulse response. (Default: 48000)
        decay_db (float, optional): The decay in decibels for which we actually estimate the time. (Default: 60)
        rt60_tgt (float, optional): This parameter can be used to indicate a target RT60. (Default: None)
    Returns:
        est_rt60 (float): Estimated RT60.
    """

    h = np.array(h)
    fs = float(fs)

    # The power of the impulse response in dB
    power = h ** 2
    energy = np.cumsum(power[::-1])[::-1]  # Integration according to Schroeder

    try:
        # remove the possibly all zero tail
        i_nz = np.max(np.where(energy > 0)[0])
        energy = energy[:i_nz]
        energy_db = 10 * np.log10(energy)
        energy_db -= energy_db[0]

        # -5 dB headroom
        i_5db = np.min(np.where(-5 - energy_db > 0)[0])
        e_5db = energy_db[i_5db]
        t_5db = i_5db / fs

        # after decay
        i_decay = np.min(np.where(-5 - decay_db - energy_db > 0)[0])
        t_decay = i_decay / fs

        # compute the decay time
        decay_time = t_decay - t_5db
        est_rt60 = (60 / decay_db) * decay_time
    except:
        est_rt60 = np.array(0.0)

    return est_rt60
    
def causal_crop(x, length: int):
    if x.shape[-1] != length:
        stop = x.shape[-1] - 1
        start = stop - length
        x = x[..., start:stop]
    return x

class FiLM(torch.nn.Module):
    def __init__(
        self,
        cond_dim,  # dim of conditioning input
        num_features,  # dim of the conv channel
        batch_norm=True,
    ):
        super().__init__()
        self.num_features = num_features
        self.batch_norm = batch_norm
        if batch_norm:
            self.bn = torch.nn.BatchNorm1d(num_features, affine=False)
        self.adaptor = torch.nn.Linear(cond_dim, num_features * 2)

    def forward(self, x, cond):

        cond = self.adaptor(cond)
        g, b = torch.chunk(cond, 2, dim=-1)
        g = g.permute(0, 2, 1)
        b = b.permute(0, 2, 1)

        if self.batch_norm:
            x = self.bn(x)  # apply BatchNorm without affine
        x = (x * g) + b  # then apply conditional affine

        return x

class TCNBlock(torch.nn.Module):
  def __init__(self, in_channels, out_channels, kernel_size, dilation, cond_dim=0, activation=True):
    super().__init__()
    self.conv = torch.nn.Conv1d(
        in_channels, 
        out_channels, 
        kernel_size, 
        dilation=dilation, 
        padding=0, #((kernel_size-1)//2)*dilation,
        bias=True)
    if cond_dim > 0:
      self.film = FiLM(cond_dim, out_channels, batch_norm=False)
    if activation:
      #self.act = torch.nn.Tanh()
      self.act = torch.nn.PReLU()
    self.res = torch.nn.Conv1d(in_channels, out_channels, 1, bias=False)

  def forward(self, x, c=None):
    x_in = x
    x = self.conv(x)
    if hasattr(self, "film"):
      x = self.film(x, c)
    if hasattr(self, "act"):
      x = self.act(x)
    x_res = causal_crop(self.res(x_in), x.shape[-1])
    x = x + x_res

    return x

class TCN(torch.nn.Module):
  def __init__(self, n_inputs=1, n_outputs=1, n_blocks=10, kernel_size=13, n_channels=64, dilation_growth=4, cond_dim=0):
    super().__init__()
    self.kernel_size = kernel_size
    self.n_channels = n_channels
    self.dilation_growth = dilation_growth
    self.n_blocks = n_blocks
    self.stack_size = n_blocks

    self.blocks = torch.nn.ModuleList()
    for n in range(n_blocks):
      if n == 0:
        in_ch = n_inputs
        out_ch = n_channels
        act = True
      elif (n+1) == n_blocks:
        in_ch = n_channels
        out_ch = n_outputs
        act = True
      else:
        in_ch = n_channels
        out_ch = n_channels
        act = True
      
      dilation = dilation_growth ** n
      self.blocks.append(TCNBlock(in_ch, out_ch, kernel_size, dilation, cond_dim=cond_dim, activation=act))

  def forward(self, x, c=None):
    for block in self.blocks:
      x = block(x, c)

    return x
  
  def compute_receptive_field(self):
    """Compute the receptive field in samples."""
    rf = self.kernel_size
    for n in range(1, self.n_blocks):
        dilation = self.dilation_growth ** (n % self.stack_size)
        rf = rf + ((self.kernel_size - 1) * dilation)
    return rf
    
# setup the pre-trained models
model_comp = torch.load("compressor_full.pt", map_location="cpu").eval()
model_verb = torch.load("reverb_full.pt", map_location="cpu").eval()
model_amp = torch.load("amp_full.pt", map_location="cpu").eval()
model_delay = torch.load("delay_full.pt", map_location="cpu").eval()
model_synth = torch.load("synth2synth_full.pt", map_location="cpu").eval()



def inference(aud, effect_type):
  x_p, sample_rate = torchaudio.load(aud.file)
  
  effect_type = effect_type #@param ["Compressor", "Reverb", "Amp", "Analog Delay", "Synth2Synth"]
  gain_dB = -24 #@param {type:"slider", min:-24, max:24, step:0.1}
  c0 = -1.4 #@param {type:"slider", min:-10, max:10, step:0.1}
  c1 = 3 #@param {type:"slider", min:-10, max:10, step:0.1}
  mix = 70 #@param {type:"slider", min:0, max:100, step:1}
  width = 50 #@param {type:"slider", min:0, max:100, step:1}
  max_length = 30 #@param {type:"slider", min:5, max:120, step:1}
  stereo = True #@param {type:"boolean"}
  tail = True #@param {type:"boolean"}
  
  # select model type
  if effect_type == "Compressor":
    pt_model = model_comp
  elif effect_type == "Reverb":
    pt_model = model_verb
  elif effect_type == "Amp":
    pt_model = model_amp
  elif effect_type == "Analog Delay":
    pt_model = model_delay
  elif effect_type == "Synth2Synth":
    pt_model = model_synth
  
  # measure the receptive field
  pt_model_rf = pt_model.compute_receptive_field()
  
  # crop input signal if needed
  max_samples = int(sample_rate * max_length)
  x_p_crop = x_p[:,:max_samples]
  chs = x_p_crop.shape[0]
  
  # if mono and stereo requested
  if chs == 1 and stereo:
    x_p_crop = x_p_crop.repeat(2,1)
    chs = 2
  
  # pad the input signal
  front_pad = pt_model_rf-1
  back_pad = 0 if not tail else front_pad
  x_p_pad = torch.nn.functional.pad(x_p_crop, (front_pad, back_pad))
  
  # design highpass filter
  sos = scipy.signal.butter(
      8, 
      20.0, 
      fs=sample_rate, 
      output="sos", 
      btype="highpass"
  )
  
  # compute linear gain 
  gain_ln = 10 ** (gain_dB / 20.0)
  
  # process audio with pre-trained model
  with torch.no_grad():
    y_hat = torch.zeros(x_p_crop.shape[0], x_p_crop.shape[1] + back_pad)
    for n in range(chs):
      if n == 0:
        factor = (width*5e-3)
      elif n == 1:
        factor = -(width*5e-3)
      c = torch.tensor([float(c0+factor), float(c1+factor)]).view(1,1,-1)
      y_hat_ch = pt_model(gain_ln * x_p_pad[n,:].view(1,1,-1), c)
      y_hat_ch = scipy.signal.sosfilt(sos, y_hat_ch.view(-1).numpy())
      y_hat_ch = torch.tensor(y_hat_ch)
      y_hat[n,:] = y_hat_ch
  
  # pad the dry signal 
  x_dry = torch.nn.functional.pad(x_p_crop, (0,back_pad))
  
  # normalize each first
  y_hat /= y_hat.abs().max()
  x_dry /= x_dry.abs().max()
  
  # mix
  mix = mix/100.0
  y_hat = (mix * y_hat) + ((1-mix) * x_dry)
  
  # remove transient
  y_hat = y_hat[...,8192:]
  y_hat /= y_hat.abs().max()
  
  torchaudio.save("output.mp3", y_hat.view(chs,-1), sample_rate, compression=320.0)
  return "output.mp3"