Spaces:
Runtime error
Runtime error
import argparse | |
import logging | |
import sys | |
from copy import deepcopy | |
sys.path.append('./') # to run '$ python *.py' files in subdirectories | |
logger = logging.getLogger(__name__) | |
from models.common import * | |
from models.experimental import * | |
from utils.autoanchor import check_anchor_order | |
from utils.general import make_divisible, check_file, set_logging | |
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ | |
select_device, copy_attr | |
from utils.loss import SigmoidBin | |
try: | |
import thop # for FLOPS computation | |
except ImportError: | |
thop = None | |
class Detect(nn.Module): | |
stride = None # strides computed during build | |
export = False # onnx export | |
def __init__(self, nc=80, anchors=(), ch=()): # detection layer | |
super(Detect, self).__init__() | |
self.nc = nc # number of classes | |
self.no = nc + 5 # number of outputs per anchor | |
self.nl = len(anchors) # number of detection layers | |
self.na = len(anchors[0]) // 2 # number of anchors | |
self.grid = [torch.zeros(1)] * self.nl # init grid | |
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |
self.register_buffer('anchors', a) # shape(nl,na,2) | |
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) | |
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv | |
def forward(self, x): | |
# x = x.copy() # for profiling | |
z = [] # inference output | |
self.training |= self.export | |
for i in range(self.nl): | |
x[i] = self.m[i](x[i]) # conv | |
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |
if not self.training: # inference | |
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
y = x[i].sigmoid() | |
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy | |
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
z.append(y.view(bs, -1, self.no)) | |
return x if self.training else (torch.cat(z, 1), x) | |
def _make_grid(nx=20, ny=20): | |
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
class IDetect(nn.Module): | |
stride = None # strides computed during build | |
export = False # onnx export | |
def __init__(self, nc=80, anchors=(), ch=()): # detection layer | |
super(IDetect, self).__init__() | |
self.nc = nc # number of classes | |
self.no = nc + 5 # number of outputs per anchor | |
self.nl = len(anchors) # number of detection layers | |
self.na = len(anchors[0]) // 2 # number of anchors | |
self.grid = [torch.zeros(1)] * self.nl # init grid | |
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |
self.register_buffer('anchors', a) # shape(nl,na,2) | |
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) | |
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv | |
self.ia = nn.ModuleList(ImplicitA(x) for x in ch) | |
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch) | |
def forward(self, x): | |
# x = x.copy() # for profiling | |
z = [] # inference output | |
self.training |= self.export | |
for i in range(self.nl): | |
x[i] = self.m[i](self.ia[i](x[i])) # conv | |
x[i] = self.im[i](x[i]) | |
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |
if not self.training: # inference | |
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
y = x[i].sigmoid() | |
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy | |
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
z.append(y.view(bs, -1, self.no)) | |
return x if self.training else (torch.cat(z, 1), x) | |
def _make_grid(nx=20, ny=20): | |
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
class IAuxDetect(nn.Module): | |
stride = None # strides computed during build | |
export = False # onnx export | |
def __init__(self, nc=80, anchors=(), ch=()): # detection layer | |
super(IAuxDetect, self).__init__() | |
self.nc = nc # number of classes | |
self.no = nc + 5 # number of outputs per anchor | |
self.nl = len(anchors) # number of detection layers | |
self.na = len(anchors[0]) // 2 # number of anchors | |
self.grid = [torch.zeros(1)] * self.nl # init grid | |
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |
self.register_buffer('anchors', a) # shape(nl,na,2) | |
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) | |
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[:self.nl]) # output conv | |
self.m2 = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[self.nl:]) # output conv | |
self.ia = nn.ModuleList(ImplicitA(x) for x in ch[:self.nl]) | |
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch[:self.nl]) | |
def forward(self, x): | |
# x = x.copy() # for profiling | |
z = [] # inference output | |
self.training |= self.export | |
for i in range(self.nl): | |
x[i] = self.m[i](self.ia[i](x[i])) # conv | |
x[i] = self.im[i](x[i]) | |
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |
x[i+self.nl] = self.m2[i](x[i+self.nl]) | |
x[i+self.nl] = x[i+self.nl].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |
if not self.training: # inference | |
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
y = x[i].sigmoid() | |
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy | |
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
z.append(y.view(bs, -1, self.no)) | |
return x if self.training else (torch.cat(z, 1), x[:self.nl]) | |
def _make_grid(nx=20, ny=20): | |
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
class IBin(nn.Module): | |
stride = None # strides computed during build | |
export = False # onnx export | |
def __init__(self, nc=80, anchors=(), ch=(), bin_count=21): # detection layer | |
super(IBin, self).__init__() | |
self.nc = nc # number of classes | |
self.bin_count = bin_count | |
self.w_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0) | |
self.h_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0) | |
# classes, x,y,obj | |
self.no = nc + 3 + \ | |
self.w_bin_sigmoid.get_length() + self.h_bin_sigmoid.get_length() # w-bce, h-bce | |
# + self.x_bin_sigmoid.get_length() + self.y_bin_sigmoid.get_length() | |
self.nl = len(anchors) # number of detection layers | |
self.na = len(anchors[0]) // 2 # number of anchors | |
self.grid = [torch.zeros(1)] * self.nl # init grid | |
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |
self.register_buffer('anchors', a) # shape(nl,na,2) | |
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) | |
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv | |
self.ia = nn.ModuleList(ImplicitA(x) for x in ch) | |
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch) | |
def forward(self, x): | |
#self.x_bin_sigmoid.use_fw_regression = True | |
#self.y_bin_sigmoid.use_fw_regression = True | |
self.w_bin_sigmoid.use_fw_regression = True | |
self.h_bin_sigmoid.use_fw_regression = True | |
# x = x.copy() # for profiling | |
z = [] # inference output | |
self.training |= self.export | |
for i in range(self.nl): | |
x[i] = self.m[i](self.ia[i](x[i])) # conv | |
x[i] = self.im[i](x[i]) | |
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |
if not self.training: # inference | |
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
y = x[i].sigmoid() | |
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy | |
#y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
#px = (self.x_bin_sigmoid.forward(y[..., 0:12]) + self.grid[i][..., 0]) * self.stride[i] | |
#py = (self.y_bin_sigmoid.forward(y[..., 12:24]) + self.grid[i][..., 1]) * self.stride[i] | |
pw = self.w_bin_sigmoid.forward(y[..., 2:24]) * self.anchor_grid[i][..., 0] | |
ph = self.h_bin_sigmoid.forward(y[..., 24:46]) * self.anchor_grid[i][..., 1] | |
#y[..., 0] = px | |
#y[..., 1] = py | |
y[..., 2] = pw | |
y[..., 3] = ph | |
y = torch.cat((y[..., 0:4], y[..., 46:]), dim=-1) | |
z.append(y.view(bs, -1, y.shape[-1])) | |
return x if self.training else (torch.cat(z, 1), x) | |
def _make_grid(nx=20, ny=20): | |
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
class Model(nn.Module): | |
def __init__(self, cfg='yolor-csp-c.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes | |
super(Model, self).__init__() | |
self.traced = False | |
if isinstance(cfg, dict): | |
self.yaml = cfg # model dict | |
else: # is *.yaml | |
import yaml # for torch hub | |
self.yaml_file = Path(cfg).name | |
with open(cfg) as f: | |
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict | |
# Define model | |
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels | |
if nc and nc != self.yaml['nc']: | |
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") | |
self.yaml['nc'] = nc # override yaml value | |
if anchors: | |
logger.info(f'Overriding model.yaml anchors with anchors={anchors}') | |
self.yaml['anchors'] = round(anchors) # override yaml value | |
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist | |
self.names = [str(i) for i in range(self.yaml['nc'])] # default names | |
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) | |
# Build strides, anchors | |
m = self.model[-1] # Detect() | |
if isinstance(m, Detect): | |
s = 256 # 2x min stride | |
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward | |
m.anchors /= m.stride.view(-1, 1, 1) | |
check_anchor_order(m) | |
self.stride = m.stride | |
self._initialize_biases() # only run once | |
# print('Strides: %s' % m.stride.tolist()) | |
if isinstance(m, IDetect): | |
s = 256 # 2x min stride | |
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward | |
m.anchors /= m.stride.view(-1, 1, 1) | |
check_anchor_order(m) | |
self.stride = m.stride | |
self._initialize_biases() # only run once | |
# print('Strides: %s' % m.stride.tolist()) | |
if isinstance(m, IAuxDetect): | |
s = 256 # 2x min stride | |
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]]) # forward | |
#print(m.stride) | |
m.anchors /= m.stride.view(-1, 1, 1) | |
check_anchor_order(m) | |
self.stride = m.stride | |
self._initialize_aux_biases() # only run once | |
# print('Strides: %s' % m.stride.tolist()) | |
if isinstance(m, IBin): | |
s = 256 # 2x min stride | |
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward | |
m.anchors /= m.stride.view(-1, 1, 1) | |
check_anchor_order(m) | |
self.stride = m.stride | |
self._initialize_biases_bin() # only run once | |
# print('Strides: %s' % m.stride.tolist()) | |
# Init weights, biases | |
initialize_weights(self) | |
self.info() | |
logger.info('') | |
def forward(self, x, augment=False, profile=False): | |
if augment: | |
img_size = x.shape[-2:] # height, width | |
s = [1, 0.83, 0.67] # scales | |
f = [None, 3, None] # flips (2-ud, 3-lr) | |
y = [] # outputs | |
for si, fi in zip(s, f): | |
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) | |
yi = self.forward_once(xi)[0] # forward | |
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save | |
yi[..., :4] /= si # de-scale | |
if fi == 2: | |
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud | |
elif fi == 3: | |
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr | |
y.append(yi) | |
return torch.cat(y, 1), None # augmented inference, train | |
else: | |
return self.forward_once(x, profile) # single-scale inference, train | |
def forward_once(self, x, profile=False): | |
y, dt = [], [] # outputs | |
for m in self.model: | |
if m.f != -1: # if not from previous layer | |
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers | |
if not hasattr(self, 'traced'): | |
self.traced=False | |
if self.traced: | |
if isinstance(m, Detect) or isinstance(m, IDetect) or isinstance(m, IAuxDetect): | |
break | |
if profile: | |
c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin)) | |
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS | |
for _ in range(10): | |
m(x.copy() if c else x) | |
t = time_synchronized() | |
for _ in range(10): | |
m(x.copy() if c else x) | |
dt.append((time_synchronized() - t) * 100) | |
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type)) | |
x = m(x) # run | |
y.append(x if m.i in self.save else None) # save output | |
if profile: | |
print('%.1fms total' % sum(dt)) | |
return x | |
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency | |
# https://arxiv.org/abs/1708.02002 section 3.3 | |
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. | |
m = self.model[-1] # Detect() module | |
for mi, s in zip(m.m, m.stride): # from | |
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) | |
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls | |
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |
def _initialize_aux_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency | |
# https://arxiv.org/abs/1708.02002 section 3.3 | |
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. | |
m = self.model[-1] # Detect() module | |
for mi, mi2, s in zip(m.m, m.m2, m.stride): # from | |
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) | |
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls | |
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |
b2 = mi2.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |
b2.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) | |
b2.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls | |
mi2.bias = torch.nn.Parameter(b2.view(-1), requires_grad=True) | |
def _initialize_biases_bin(self, cf=None): # initialize biases into Detect(), cf is class frequency | |
# https://arxiv.org/abs/1708.02002 section 3.3 | |
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. | |
m = self.model[-1] # Bin() module | |
bc = m.bin_count | |
for mi, s in zip(m.m, m.stride): # from | |
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |
old = b[:, (0,1,2,bc+3)].data | |
obj_idx = 2*bc+4 | |
b[:, :obj_idx].data += math.log(0.6 / (bc + 1 - 0.99)) | |
b[:, obj_idx].data += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) | |
b[:, (obj_idx+1):].data += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls | |
b[:, (0,1,2,bc+3)].data = old | |
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |
def _print_biases(self): | |
m = self.model[-1] # Detect() module | |
for mi in m.m: # from | |
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) | |
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) | |
# def _print_weights(self): | |
# for m in self.model.modules(): | |
# if type(m) is Bottleneck: | |
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights | |
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers | |
print('Fusing layers... ') | |
for m in self.model.modules(): | |
if isinstance(m, RepConv): | |
#print(f" fuse_repvgg_block") | |
m.fuse_repvgg_block() | |
elif isinstance(m, RepConv_OREPA): | |
#print(f" switch_to_deploy") | |
m.switch_to_deploy() | |
elif type(m) is Conv and hasattr(m, 'bn'): | |
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv | |
delattr(m, 'bn') # remove batchnorm | |
m.forward = m.fuseforward # update forward | |
self.info() | |
return self | |
def nms(self, mode=True): # add or remove NMS module | |
present = type(self.model[-1]) is NMS # last layer is NMS | |
if mode and not present: | |
print('Adding NMS... ') | |
m = NMS() # module | |
m.f = -1 # from | |
m.i = self.model[-1].i + 1 # index | |
self.model.add_module(name='%s' % m.i, module=m) # add | |
self.eval() | |
elif not mode and present: | |
print('Removing NMS... ') | |
self.model = self.model[:-1] # remove | |
return self | |
def autoshape(self): # add autoShape module | |
print('Adding autoShape... ') | |
m = autoShape(self) # wrap model | |
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes | |
return m | |
def info(self, verbose=False, img_size=640): # print model information | |
model_info(self, verbose, img_size) | |
def parse_model(d, ch): # model_dict, input_channels(3) | |
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) | |
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] | |
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors | |
no = na * (nc + 5) # number of outputs = anchors * (classes + 5) | |
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out | |
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args | |
m = eval(m) if isinstance(m, str) else m # eval strings | |
for j, a in enumerate(args): | |
try: | |
args[j] = eval(a) if isinstance(a, str) else a # eval strings | |
except: | |
pass | |
n = max(round(n * gd), 1) if n > 1 else n # depth gain | |
if m in [nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC, | |
SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv, | |
Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC, | |
RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC, | |
Res, ResCSPA, ResCSPB, ResCSPC, | |
RepRes, RepResCSPA, RepResCSPB, RepResCSPC, | |
ResX, ResXCSPA, ResXCSPB, ResXCSPC, | |
RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC, | |
Ghost, GhostCSPA, GhostCSPB, GhostCSPC, | |
SwinTransformerBlock, STCSPA, STCSPB, STCSPC, | |
SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC]: | |
c1, c2 = ch[f], args[0] | |
if c2 != no: # if not output | |
c2 = make_divisible(c2 * gw, 8) | |
args = [c1, c2, *args[1:]] | |
if m in [DownC, SPPCSPC, GhostSPPCSPC, | |
BottleneckCSPA, BottleneckCSPB, BottleneckCSPC, | |
RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC, | |
ResCSPA, ResCSPB, ResCSPC, | |
RepResCSPA, RepResCSPB, RepResCSPC, | |
ResXCSPA, ResXCSPB, ResXCSPC, | |
RepResXCSPA, RepResXCSPB, RepResXCSPC, | |
GhostCSPA, GhostCSPB, GhostCSPC, | |
STCSPA, STCSPB, STCSPC, | |
ST2CSPA, ST2CSPB, ST2CSPC]: | |
args.insert(2, n) # number of repeats | |
n = 1 | |
elif m is nn.BatchNorm2d: | |
args = [ch[f]] | |
elif m is Concat: | |
c2 = sum([ch[x] for x in f]) | |
elif m is Chuncat: | |
c2 = sum([ch[x] for x in f]) | |
elif m is Shortcut: | |
c2 = ch[f[0]] | |
elif m is Foldcut: | |
c2 = ch[f] // 2 | |
elif m in [Detect, IDetect, IAuxDetect, IBin]: | |
args.append([ch[x] for x in f]) | |
if isinstance(args[1], int): # number of anchors | |
args[1] = [list(range(args[1] * 2))] * len(f) | |
elif m is ReOrg: | |
c2 = ch[f] * 4 | |
elif m is Contract: | |
c2 = ch[f] * args[0] ** 2 | |
elif m is Expand: | |
c2 = ch[f] // args[0] ** 2 | |
else: | |
c2 = ch[f] | |
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module | |
t = str(m)[8:-2].replace('__main__.', '') # module type | |
np = sum([x.numel() for x in m_.parameters()]) # number params | |
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params | |
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print | |
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist | |
layers.append(m_) | |
if i == 0: | |
ch = [] | |
ch.append(c2) | |
return nn.Sequential(*layers), sorted(save) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--cfg', type=str, default='yolor-csp-c.yaml', help='model.yaml') | |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--profile', action='store_true', help='profile model speed') | |
opt = parser.parse_args() | |
opt.cfg = check_file(opt.cfg) # check file | |
set_logging() | |
device = select_device(opt.device) | |
# Create model | |
model = Model(opt.cfg).to(device) | |
model.train() | |
if opt.profile: | |
img = torch.rand(1, 3, 640, 640).to(device) | |
y = model(img, profile=True) | |
# Profile | |
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device) | |
# y = model(img, profile=True) | |
# Tensorboard | |
# from torch.utils.tensorboard import SummaryWriter | |
# tb_writer = SummaryWriter() | |
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/") | |
# tb_writer.add_graph(model.model, img) # add model to tensorboard | |
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard | |