import argparse import sys import time sys.path.append('./') # to run '$ python *.py' files in subdirectories import torch import torch.nn as nn import models from models.experimental import attempt_load from utils.activations import Hardswish, SiLU from utils.general import set_logging, check_img_size from utils.torch_utils import select_device if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width parser.add_argument('--batch-size', type=int, default=1, help='batch size') parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') parser.add_argument('--grid', action='store_true', help='export Detect() layer grid') parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') opt = parser.parse_args() opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand print(opt) set_logging() t = time.time() # Load PyTorch model device = select_device(opt.device) model = attempt_load(opt.weights, map_location=device) # load FP32 model labels = model.names # Checks gs = int(max(model.stride)) # grid size (max stride) opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples # Input img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection # Update model for k, m in model.named_modules(): m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility if isinstance(m, models.common.Conv): # assign export-friendly activations if isinstance(m.act, nn.Hardswish): m.act = Hardswish() elif isinstance(m.act, nn.SiLU): m.act = SiLU() # elif isinstance(m, models.yolo.Detect): # m.forward = m.forward_export # assign forward (optional) model.model[-1].export = not opt.grid # set Detect() layer grid export y = model(img) # dry run # TorchScript export try: print('\nStarting TorchScript export with torch %s...' % torch.__version__) f = opt.weights.replace('.pt', '.torchscript.pt') # filename ts = torch.jit.trace(model, img, strict=False) ts.save(f) print('TorchScript export success, saved as %s' % f) except Exception as e: print('TorchScript export failure: %s' % e) # ONNX export try: import onnx print('\nStarting ONNX export with onnx %s...' % onnx.__version__) f = opt.weights.replace('.pt', '.onnx') # filename torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], output_names=['classes', 'boxes'] if y is None else ['output'], dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640) 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) # Checks onnx_model = onnx.load(f) # load onnx model onnx.checker.check_model(onnx_model) # check onnx model # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model print('ONNX export success, saved as %s' % f) except Exception as e: print('ONNX export failure: %s' % e) # CoreML export try: import coremltools as ct print('\nStarting CoreML export with coremltools %s...' % ct.__version__) # convert model from torchscript and apply pixel scaling as per detect.py model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) f = opt.weights.replace('.pt', '.mlmodel') # filename model.save(f) print('CoreML export success, saved as %s' % f) except Exception as e: print('CoreML export failure: %s' % e) # Finish print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))