File size: 6,019 Bytes
a3a3ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# -*- coding: utf-8 -*-
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
This file contains code that is adapted from
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
"""
import torch
import torch.nn as nn

from .base_model import BaseModel
from .blocks import FeatureFusionBlock_custom, Interpolate, _make_encoder


class MidasNet_small(BaseModel):
    """Network for monocular depth estimation.
    """
    def __init__(self,
                 path=None,
                 features=64,
                 backbone='efficientnet_lite3',
                 non_negative=True,
                 exportable=True,
                 channels_last=False,
                 align_corners=True,
                 blocks={'expand': True}):
        """Init.

        Args:
            path (str, optional): Path to saved model. Defaults to None.
            features (int, optional): Number of features. Defaults to 256.
            backbone (str, optional): Backbone network for encoder. Defaults to resnet50
        """
        print('Loading weights: ', path)

        super(MidasNet_small, self).__init__()

        use_pretrained = False if path else True

        self.channels_last = channels_last
        self.blocks = blocks
        self.backbone = backbone

        self.groups = 1

        features1 = features
        features2 = features
        features3 = features
        features4 = features
        self.expand = False
        if 'expand' in self.blocks and self.blocks['expand'] is True:
            self.expand = True
            features1 = features
            features2 = features * 2
            features3 = features * 4
            features4 = features * 8

        self.pretrained, self.scratch = _make_encoder(self.backbone,
                                                      features,
                                                      use_pretrained,
                                                      groups=self.groups,
                                                      expand=self.expand,
                                                      exportable=exportable)

        self.scratch.activation = nn.ReLU(False)

        self.scratch.refinenet4 = FeatureFusionBlock_custom(
            features4,
            self.scratch.activation,
            deconv=False,
            bn=False,
            expand=self.expand,
            align_corners=align_corners)
        self.scratch.refinenet3 = FeatureFusionBlock_custom(
            features3,
            self.scratch.activation,
            deconv=False,
            bn=False,
            expand=self.expand,
            align_corners=align_corners)
        self.scratch.refinenet2 = FeatureFusionBlock_custom(
            features2,
            self.scratch.activation,
            deconv=False,
            bn=False,
            expand=self.expand,
            align_corners=align_corners)
        self.scratch.refinenet1 = FeatureFusionBlock_custom(
            features1,
            self.scratch.activation,
            deconv=False,
            bn=False,
            align_corners=align_corners)

        self.scratch.output_conv = nn.Sequential(
            nn.Conv2d(features,
                      features // 2,
                      kernel_size=3,
                      stride=1,
                      padding=1,
                      groups=self.groups),
            Interpolate(scale_factor=2, mode='bilinear'),
            nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
            self.scratch.activation,
            nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
            nn.ReLU(True) if non_negative else nn.Identity(),
            nn.Identity(),
        )

        if path:
            self.load(path)

    def forward(self, x):
        """Forward pass.

        Args:
            x (tensor): input data (image)

        Returns:
            tensor: depth
        """
        if self.channels_last is True:
            print('self.channels_last = ', self.channels_last)
            x.contiguous(memory_format=torch.channels_last)

        layer_1 = self.pretrained.layer1(x)
        layer_2 = self.pretrained.layer2(layer_1)
        layer_3 = self.pretrained.layer3(layer_2)
        layer_4 = self.pretrained.layer4(layer_3)

        layer_1_rn = self.scratch.layer1_rn(layer_1)
        layer_2_rn = self.scratch.layer2_rn(layer_2)
        layer_3_rn = self.scratch.layer3_rn(layer_3)
        layer_4_rn = self.scratch.layer4_rn(layer_4)

        path_4 = self.scratch.refinenet4(layer_4_rn)
        path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
        path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
        path_1 = self.scratch.refinenet1(path_2, layer_1_rn)

        out = self.scratch.output_conv(path_1)

        return torch.squeeze(out, dim=1)


def fuse_model(m):
    prev_previous_type = nn.Identity()
    prev_previous_name = ''
    previous_type = nn.Identity()
    previous_name = ''
    for name, module in m.named_modules():
        if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(
                module) == nn.ReLU:
            # print("FUSED ", prev_previous_name, previous_name, name)
            torch.quantization.fuse_modules(
                m, [prev_previous_name, previous_name, name], inplace=True)
        elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
            # print("FUSED ", prev_previous_name, previous_name)
            torch.quantization.fuse_modules(
                m, [prev_previous_name, previous_name], inplace=True)
        # elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
        #    print("FUSED ", previous_name, name)
        #    torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)

        prev_previous_type = previous_type
        prev_previous_name = previous_name
        previous_type = type(module)
        previous_name = name