Spaces:
Running
on
Zero
Running
on
Zero
File size: 40,407 Bytes
a3a3ae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
from __future__ import division
import collections
import math
import numbers
import random
import types
import warnings
# from PIL import Image, ImageOps, ImageEnhance
try:
import accimage
except ImportError:
accimage = None
import cv2
import numpy as np
import torch
from . import functional as F
__all__ = [
"Compose", "ToTensor", "Normalize", "Resize", "Scale",
"CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice",
"RandomOrder", "RandomCrop", "RandomHorizontalFlip", "RandomVerticalFlip",
"RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
"LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine",
"Grayscale", "RandomGrayscale"
]
_cv2_pad_to_str = {
'constant': cv2.BORDER_CONSTANT,
'edge': cv2.BORDER_REPLICATE,
'reflect': cv2.BORDER_REFLECT_101,
'symmetric': cv2.BORDER_REFLECT
}
_cv2_interpolation_to_str = {
'nearest': cv2.INTER_NEAREST,
'bilinear': cv2.INTER_LINEAR,
'area': cv2.INTER_AREA,
'bicubic': cv2.INTER_CUBIC,
'lanczos': cv2.INTER_LANCZOS4
}
_cv2_interpolation_from_str = {
v: k
for k, v in _cv2_interpolation_to_str.items()
}
class Compose(object):
"""Composes several transforms together.
Args:
transforms (list of ``Transform`` objects): list of transforms to compose.
Example:
>>> transforms.Compose([
>>> transforms.CenterCrop(10),
>>> transforms.ToTensor(),
>>> ])
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img):
for t in self.transforms:
img = t(img)
return img
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
class ToTensor(object):
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
Converts a PIL Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
"""
def __call__(self, pic):
"""
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
return F.to_tensor(pic)
def __repr__(self):
return self.__class__.__name__ + '()'
class Normalize(object):
"""Normalize a tensor image with mean and standard deviation.
Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
will normalize each channel of the input ``torch.*Tensor`` i.e.
``input[channel] = (input[channel] - mean[channel]) / std[channel]``
.. note::
This transform acts in-place, i.e., it mutates the input tensor.
Args:
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized Tensor image.
"""
return F.normalize(tensor, self.mean, self.std)
def __repr__(self):
return self.__class__.__name__ + '(mean={0}, std={1})'.format(
self.mean, self.std)
class Resize(object):
"""Resize the input numpy ndarray to the given size.
Args:
size (sequence or int): Desired output size. If size is a sequence like
(h, w), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Desired interpolation. Default is
``cv2.INTER_CUBIC``, bicubic interpolation
"""
def __init__(self, size, interpolation=cv2.INTER_LINEAR):
# assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2)
if isinstance(size, int):
self.size = size
elif isinstance(size, collections.abc.Iterable) and len(size) == 2:
if type(size) == list:
size = tuple(size)
self.size = size
else:
raise ValueError('Unknown inputs for size: {}'.format(size))
self.interpolation = interpolation
def __call__(self, img):
"""
Args:
img (numpy ndarray): Image to be scaled.
Returns:
numpy ndarray: Rescaled image.
"""
return F.resize(img, self.size, self.interpolation)
def __repr__(self):
interpolate_str = _cv2_interpolation_from_str[self.interpolation]
return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(
self.size, interpolate_str)
class Scale(Resize):
"""
Note: This transform is deprecated in favor of Resize.
"""
def __init__(self, *args, **kwargs):
warnings.warn(
"The use of the transforms.Scale transform is deprecated, " +
"please use transforms.Resize instead.")
super(Scale, self).__init__(*args, **kwargs)
class CenterCrop(object):
"""Crops the given numpy ndarray at the center.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img):
"""
Args:
img (numpy ndarray): Image to be cropped.
Returns:
numpy ndarray: Cropped image.
"""
return F.center_crop(img, self.size)
def __repr__(self):
return self.__class__.__name__ + '(size={0})'.format(self.size)
class Pad(object):
"""Pad the given numpy ndarray on all sides with the given "pad" value.
Args:
padding (int or tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
Default is constant.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value at the edge of the image
- reflect: pads with reflection of image without repeating the last value on the edge
For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image repeating the last value on the edge
For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
"""
def __init__(self, padding, fill=0, padding_mode='constant'):
assert isinstance(padding, (numbers.Number, tuple, list))
assert isinstance(fill, (numbers.Number, str, tuple))
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
if isinstance(padding,
collections.Sequence) and len(padding) not in [2, 4]:
raise ValueError(
"Padding must be an int or a 2, or 4 element tuple, not a " +
"{} element tuple".format(len(padding)))
self.padding = padding
self.fill = fill
self.padding_mode = padding_mode
def __call__(self, img):
"""
Args:
img (numpy ndarray): Image to be padded.
Returns:
numpy ndarray: Padded image.
"""
return F.pad(img, self.padding, self.fill, self.padding_mode)
def __repr__(self):
return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
format(self.padding, self.fill, self.padding_mode)
class Lambda(object):
"""Apply a user-defined lambda as a transform.
Args:
lambd (function): Lambda/function to be used for transform.
"""
def __init__(self, lambd):
assert isinstance(lambd, types.LambdaType)
self.lambd = lambd
def __call__(self, img):
return self.lambd(img)
def __repr__(self):
return self.__class__.__name__ + '()'
class RandomTransforms(object):
"""Base class for a list of transformations with randomness
Args:
transforms (list or tuple): list of transformations
"""
def __init__(self, transforms):
assert isinstance(transforms, (list, tuple))
self.transforms = transforms
def __call__(self, *args, **kwargs):
raise NotImplementedError()
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
class RandomApply(RandomTransforms):
"""Apply randomly a list of transformations with a given probability
Args:
transforms (list or tuple): list of transformations
p (float): probability
"""
def __init__(self, transforms, p=0.5):
super(RandomApply, self).__init__(transforms)
self.p = p
def __call__(self, img):
if self.p < random.random():
return img
for t in self.transforms:
img = t(img)
return img
def __repr__(self):
format_string = self.__class__.__name__ + '('
format_string += '\n p={}'.format(self.p)
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
class RandomOrder(RandomTransforms):
"""Apply a list of transformations in a random order
"""
def __call__(self, img):
order = list(range(len(self.transforms)))
random.shuffle(order)
for i in order:
img = self.transforms[i](img)
return img
class RandomChoice(RandomTransforms):
"""Apply single transformation randomly picked from a list
"""
def __call__(self, img):
t = random.choice(self.transforms)
return t(img)
class RandomCrop(object):
"""Crop the given numpy ndarray at a random location.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
padding (int or sequence, optional): Optional padding on each border
of the image. Default is None, i.e no padding. If a sequence of length
4 is provided, it is used to pad left, top, right, bottom borders
respectively. If a sequence of length 2 is provided, it is used to
pad left/right, top/bottom borders, respectively.
pad_if_needed (boolean): It will pad the image if smaller than the
desired size to avoid raising an exception.
fill: Pixel fill value for constant fill. Default is 0. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
"""
def __init__(self,
size,
padding=None,
pad_if_needed=False,
fill=0,
padding_mode='constant'):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
self.pad_if_needed = pad_if_needed
self.fill = fill
self.padding_mode = padding_mode
@staticmethod
def get_params(img, output_size):
"""Get parameters for ``crop`` for a random crop.
Args:
img (numpy ndarray): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
"""
h, w = img.shape[0:2]
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
def __call__(self, img):
"""
Args:
img (numpy ndarray): Image to be cropped.
Returns:
numpy ndarray: Cropped image.
"""
if self.padding is not None:
img = F.pad(img, self.padding, self.fill, self.padding_mode)
# pad the width if needed
if self.pad_if_needed and img.shape[1] < self.size[1]:
img = F.pad(img, (self.size[1] - img.shape[1], 0), self.fill,
self.padding_mode)
# pad the height if needed
if self.pad_if_needed and img.shape[0] < self.size[0]:
img = F.pad(img, (0, self.size[0] - img.shape[0]), self.fill,
self.padding_mode)
i, j, h, w = self.get_params(img, self.size)
return F.crop(img, i, j, h, w)
def __repr__(self):
return self.__class__.__name__ + '(size={0}, padding={1})'.format(
self.size, self.padding)
class RandomHorizontalFlip(object):
"""Horizontally flip the given PIL Image randomly with a given probability.
Args:
p (float): probability of the image being flipped. Default value is 0.5
"""
def __init__(self, p=0.5):
self.p = p
def __call__(self, img):
"""random
Args:
img (numpy ndarray): Image to be flipped.
Returns:
numpy ndarray: Randomly flipped image.
"""
# if random.random() < self.p:
# print('flip')
# return F.hflip(img)
if random.random() < self.p:
return F.hflip(img)
return img
def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)
class RandomVerticalFlip(object):
"""Vertically flip the given PIL Image randomly with a given probability.
Args:
p (float): probability of the image being flipped. Default value is 0.5
"""
def __init__(self, p=0.5):
self.p = p
def __call__(self, img):
"""
Args:
img (numpy ndarray): Image to be flipped.
Returns:
numpy ndarray: Randomly flipped image.
"""
if random.random() < self.p:
return F.vflip(img)
return img
def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)
class RandomResizedCrop(object):
"""Crop the given numpy ndarray to random size and aspect ratio.
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: expected output size of each edge
scale: range of size of the origin size cropped
ratio: range of aspect ratio of the origin aspect ratio cropped
interpolation: Default: cv2.INTER_CUBIC
"""
def __init__(self,
size,
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
interpolation=cv2.INTER_LINEAR):
self.size = (size, size)
self.interpolation = interpolation
self.scale = scale
self.ratio = ratio
@staticmethod
def get_params(img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (numpy ndarray): Image to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
for attempt in range(10):
area = img.shape[0] * img.shape[1]
target_area = random.uniform(*scale) * area
aspect_ratio = random.uniform(*ratio)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img.shape[1] and h <= img.shape[0]:
i = random.randint(0, img.shape[0] - h)
j = random.randint(0, img.shape[1] - w)
return i, j, h, w
# Fallback
w = min(img.shape[0], img.shape[1])
i = (img.shape[0] - w) // 2
j = (img.shape[1] - w) // 2
return i, j, w, w
def __call__(self, img):
"""
Args:
img (numpy ndarray): Image to be cropped and resized.
Returns:
numpy ndarray: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(img, self.scale, self.ratio)
return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)
def __repr__(self):
interpolate_str = _cv2_interpolation_from_str[self.interpolation]
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += ', scale={0}'.format(
tuple(round(s, 4) for s in self.scale))
format_string += ', ratio={0}'.format(
tuple(round(r, 4) for r in self.ratio))
format_string += ', interpolation={0})'.format(interpolate_str)
return format_string
class RandomSizedCrop(RandomResizedCrop):
"""
Note: This transform is deprecated in favor of RandomResizedCrop.
"""
def __init__(self, *args, **kwargs):
warnings.warn(
"The use of the transforms.RandomSizedCrop transform is deprecated, "
+ "please use transforms.RandomResizedCrop instead.")
super(RandomSizedCrop, self).__init__(*args, **kwargs)
class FiveCrop(object):
"""Crop the given numpy ndarray into four corners and the central crop
.. Note::
This transform returns a tuple of images and there may be a mismatch in the number of
inputs and targets your Dataset returns. See below for an example of how to deal with
this.
Args:
size (sequence or int): Desired output size of the crop. If size is an ``int``
instead of sequence like (h, w), a square crop of size (size, size) is made.
Example:
>>> transform = Compose([
>>> FiveCrop(size), # this is a list of numpy ndarrays
>>> Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
>>> ])
>>> #In your test loop you can do the following:
>>> input, target = batch # input is a 5d tensor, target is 2d
>>> bs, ncrops, c, h, w = input.size()
>>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
>>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
"""
def __init__(self, size):
self.size = size
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
assert len(
size
) == 2, "Please provide only two dimensions (h, w) for size."
self.size = size
def __call__(self, img):
return F.five_crop(img, self.size)
def __repr__(self):
return self.__class__.__name__ + '(size={0})'.format(self.size)
class TenCrop(object):
"""Crop the given numpy ndarray into four corners and the central crop plus the flipped version of
these (horizontal flipping is used by default)
.. Note::
This transform returns a tuple of images and there may be a mismatch in the number of
inputs and targets your Dataset returns. See below for an example of how to deal with
this.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
vertical_flip(bool): Use vertical flipping instead of horizontal
Example:
>>> transform = Compose([
>>> TenCrop(size), # this is a list of PIL Images
>>> Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
>>> ])
>>> #In your test loop you can do the following:
>>> input, target = batch # input is a 5d tensor, target is 2d
>>> bs, ncrops, c, h, w = input.size()
>>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
>>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
"""
def __init__(self, size, vertical_flip=False):
self.size = size
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
assert len(
size
) == 2, "Please provide only two dimensions (h, w) for size."
self.size = size
self.vertical_flip = vertical_flip
def __call__(self, img):
return F.ten_crop(img, self.size, self.vertical_flip)
def __repr__(self):
return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(
self.size, self.vertical_flip)
class LinearTransformation(object):
"""Transform a tensor image with a square transformation matrix computed
offline.
Given transformation_matrix, will flatten the torch.*Tensor, compute the dot
product with the transformation matrix and reshape the tensor to its
original shape.
Applications:
- whitening: zero-center the data, compute the data covariance matrix
[D x D] with np.dot(X.T, X), perform SVD on this matrix and
pass it as transformation_matrix.
Args:
transformation_matrix (Tensor): tensor [D x D], D = C x H x W
"""
def __init__(self, transformation_matrix):
if transformation_matrix.size(0) != transformation_matrix.size(1):
raise ValueError("transformation_matrix should be square. Got " +
"[{} x {}] rectangular matrix.".format(
*transformation_matrix.size()))
self.transformation_matrix = transformation_matrix
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be whitened.
Returns:
Tensor: Transformed image.
"""
if tensor.size(0) * tensor.size(1) * tensor.size(
2) != self.transformation_matrix.size(0):
raise ValueError(
"tensor and transformation matrix have incompatible shape." +
"[{} x {} x {}] != ".format(*tensor.size()) +
"{}".format(self.transformation_matrix.size(0)))
flat_tensor = tensor.view(1, -1)
transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
tensor = transformed_tensor.view(tensor.size())
return tensor
def __repr__(self):
format_string = self.__class__.__name__ + '('
format_string += (str(self.transformation_matrix.numpy().tolist()) +
')')
return format_string
class ColorJitter(object):
"""Randomly change the brightness, contrast and saturation of an image.
Args:
brightness (float or tuple of float (min, max)): How much to jitter brightness.
brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
or the given [min, max]. Should be non negative numbers.
contrast (float or tuple of float (min, max)): How much to jitter contrast.
contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
or the given [min, max]. Should be non negative numbers.
saturation (float or tuple of float (min, max)): How much to jitter saturation.
saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
or the given [min, max]. Should be non negative numbers.
hue (float or tuple of float (min, max)): How much to jitter hue.
hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
"""
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
self.brightness = self._check_input(brightness, 'brightness')
self.contrast = self._check_input(contrast, 'contrast')
self.saturation = self._check_input(saturation, 'saturation')
self.hue = self._check_input(hue,
'hue',
center=0,
bound=(-0.5, 0.5),
clip_first_on_zero=False)
if self.saturation is not None:
warnings.warn(
'Saturation jitter enabled. Will slow down loading immensely.')
if self.hue is not None:
warnings.warn(
'Hue jitter enabled. Will slow down loading immensely.')
def _check_input(self,
value,
name,
center=1,
bound=(0, float('inf')),
clip_first_on_zero=True):
if isinstance(value, numbers.Number):
if value < 0:
raise ValueError(
"If {} is a single number, it must be non negative.".
format(name))
value = [center - value, center + value]
if clip_first_on_zero:
value[0] = max(value[0], 0)
elif isinstance(value, (tuple, list)) and len(value) == 2:
if not bound[0] <= value[0] <= value[1] <= bound[1]:
raise ValueError("{} values should be between {}".format(
name, bound))
else:
raise TypeError(
"{} should be a single number or a list/tuple with length 2.".
format(name))
# if value is 0 or (1., 1.) for brightness/contrast/saturation
# or (0., 0.) for hue, do nothing
if value[0] == value[1] == center:
value = None
return value
@staticmethod
def get_params(brightness, contrast, saturation, hue):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
transforms = []
if brightness is not None:
brightness_factor = random.uniform(brightness[0], brightness[1])
transforms.append(
Lambda(
lambda img: F.adjust_brightness(img, brightness_factor)))
if contrast is not None:
contrast_factor = random.uniform(contrast[0], contrast[1])
transforms.append(
Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))
if saturation is not None:
saturation_factor = random.uniform(saturation[0], saturation[1])
transforms.append(
Lambda(
lambda img: F.adjust_saturation(img, saturation_factor)))
if hue is not None:
hue_factor = random.uniform(hue[0], hue[1])
transforms.append(
Lambda(lambda img: F.adjust_hue(img, hue_factor)))
random.shuffle(transforms)
transform = Compose(transforms)
return transform
def __call__(self, img):
"""
Args:
img (numpy ndarray): Input image.
Returns:
numpy ndarray: Color jittered image.
"""
transform = self.get_params(self.brightness, self.contrast,
self.saturation, self.hue)
return transform(img)
def __repr__(self):
format_string = self.__class__.__name__ + '('
format_string += 'brightness={0}'.format(self.brightness)
format_string += ', contrast={0}'.format(self.contrast)
format_string += ', saturation={0}'.format(self.saturation)
format_string += ', hue={0})'.format(self.hue)
return format_string
class RandomRotation(object):
"""Rotate the image by angle.
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees).
resample ({cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4}, optional):
An optional resampling filter. See `filters`_ for more information.
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
expand (bool, optional): Optional expansion flag.
If true, expands the output to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
"""
def __init__(self, degrees, resample=False, expand=False, center=None):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError(
"If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
if len(degrees) != 2:
raise ValueError(
"If degrees is a sequence, it must be of len 2.")
self.degrees = degrees
self.resample = resample
self.expand = expand
self.center = center
@staticmethod
def get_params(degrees):
"""Get parameters for ``rotate`` for a random rotation.
Returns:
sequence: params to be passed to ``rotate`` for random rotation.
"""
angle = random.uniform(degrees[0], degrees[1])
return angle
def __call__(self, img):
"""
img (numpy ndarray): Image to be rotated.
Returns:
numpy ndarray: Rotated image.
"""
angle = self.get_params(self.degrees)
return F.rotate(img, angle, self.resample, self.expand, self.center)
def __repr__(self):
format_string = self.__class__.__name__ + '(degrees={0}'.format(
self.degrees)
format_string += ', resample={0}'.format(self.resample)
format_string += ', expand={0}'.format(self.expand)
if self.center is not None:
format_string += ', center={0}'.format(self.center)
format_string += ')'
return format_string
class RandomAffine(object):
"""Random affine transformation of the image keeping center invariant
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees). Set to 0 to deactivate rotations.
translate (tuple, optional): tuple of maximum absolute fraction for horizontal
and vertical translations. For example translate=(a, b), then horizontal shift
is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
randomly sampled from the range a <= scale <= b. Will keep original scale by default.
shear (sequence or float or int, optional): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees). Will not apply shear by default
resample ({cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4}, optional):
An optional resampling filter. See `filters`_ for more information.
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
fillcolor (int): Optional fill color for the area outside the transform in the output image.
"""
def __init__(self,
degrees,
translate=None,
scale=None,
shear=None,
interpolation=cv2.INTER_LINEAR,
fillcolor=0):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError(
"If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
"degrees should be a list or tuple and it must be of length 2."
self.degrees = degrees
if translate is not None:
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"translate should be a list or tuple and it must be of length 2."
for t in translate:
if not (0.0 <= t <= 1.0):
raise ValueError(
"translation values should be between 0 and 1")
self.translate = translate
if scale is not None:
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
"scale should be a list or tuple and it must be of length 2."
for s in scale:
if s <= 0:
raise ValueError("scale values should be positive")
self.scale = scale
if shear is not None:
if isinstance(shear, numbers.Number):
if shear < 0:
raise ValueError(
"If shear is a single number, it must be positive.")
self.shear = (-shear, shear)
else:
assert isinstance(shear, (tuple, list)) and len(shear) == 2, \
"shear should be a list or tuple and it must be of length 2."
self.shear = shear
else:
self.shear = shear
# self.resample = resample
self.interpolation = interpolation
self.fillcolor = fillcolor
@staticmethod
def get_params(degrees, translate, scale_ranges, shears, img_size):
"""Get parameters for affine transformation
Returns:
sequence: params to be passed to the affine transformation
"""
angle = random.uniform(degrees[0], degrees[1])
if translate is not None:
max_dx = translate[0] * img_size[0]
max_dy = translate[1] * img_size[1]
translations = (np.round(random.uniform(-max_dx, max_dx)),
np.round(random.uniform(-max_dy, max_dy)))
else:
translations = (0, 0)
if scale_ranges is not None:
scale = random.uniform(scale_ranges[0], scale_ranges[1])
else:
scale = 1.0
if shears is not None:
shear = random.uniform(shears[0], shears[1])
else:
shear = 0.0
return angle, translations, scale, shear
def __call__(self, img):
"""
img (numpy ndarray): Image to be transformed.
Returns:
numpy ndarray: Affine transformed image.
"""
ret = self.get_params(self.degrees, self.translate, self.scale,
self.shear, (img.shape[1], img.shape[0]))
return F.affine(img,
*ret,
interpolation=self.interpolation,
fillcolor=self.fillcolor)
def __repr__(self):
s = '{name}(degrees={degrees}'
if self.translate is not None:
s += ', translate={translate}'
if self.scale is not None:
s += ', scale={scale}'
if self.shear is not None:
s += ', shear={shear}'
if self.resample > 0:
s += ', resample={resample}'
if self.fillcolor != 0:
s += ', fillcolor={fillcolor}'
s += ')'
d = dict(self.__dict__)
d['resample'] = _cv2_interpolation_to_str[d['resample']]
return s.format(name=self.__class__.__name__, **d)
class Grayscale(object):
"""Convert image to grayscale.
Args:
num_output_channels (int): (1 or 3) number of channels desired for output image
Returns:
numpy ndarray: Grayscale version of the input.
- If num_output_channels == 1 : returned image is single channel
- If num_output_channels == 3 : returned image is 3 channel with r == g == b
"""
def __init__(self, num_output_channels=1):
self.num_output_channels = num_output_channels
def __call__(self, img):
"""
Args:
img (numpy ndarray): Image to be converted to grayscale.
Returns:
numpy ndarray: Randomly grayscaled image.
"""
return F.to_grayscale(img,
num_output_channels=self.num_output_channels)
def __repr__(self):
return self.__class__.__name__ + '(num_output_channels={0})'.format(
self.num_output_channels)
class RandomGrayscale(object):
"""Randomly convert image to grayscale with a probability of p (default 0.1).
Args:
p (float): probability that image should be converted to grayscale.
Returns:
numpy ndarray: Grayscale version of the input image with probability p and unchanged
with probability (1-p).
- If input image is 1 channel: grayscale version is 1 channel
- If input image is 3 channel: grayscale version is 3 channel with r == g == b
"""
def __init__(self, p=0.1):
self.p = p
def __call__(self, img):
"""
Args:
img (numpy ndarray): Image to be converted to grayscale.
Returns:
numpy ndarray: Randomly grayscaled image.
"""
num_output_channels = 3
if random.random() < self.p:
return F.to_grayscale(img, num_output_channels=num_output_channels)
return img
def __repr__(self):
return self.__class__.__name__ + '(p={0})'.format(self.p)
|