Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,738 Bytes
a3a3ae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import einops
import torch
import torch as th
import torch.nn as nn
import os
from typing import Any, Dict, List, Tuple, Union
from sgm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from einops import rearrange, repeat
from torchvision.utils import make_grid
from sgm.modules.attention import SpatialTransformer
from sgm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, Downsample, ResBlock, AttentionBlock
from sgm.models.diffusion import DiffusionEngine
from sgm.util import log_txt_as_img, exists, instantiate_from_config
from safetensors.torch import load_file as load_safetensors
from .model import load_state_dict
class VideoLDM(DiffusionEngine):
def __init__(self, num_samples, trained_param_keys=[''], *args, **kwargs):
self.trained_param_keys = trained_param_keys
super().__init__(*args, **kwargs)
self.num_samples = num_samples
def init_from_ckpt(
self,
path: str,
) -> None:
if path.endswith("ckpt"):
sd = torch.load(path, map_location="cpu")
if "state_dict" in sd:
sd = sd["state_dict"]
elif path.endswith("pt"):
sd_raw = torch.load(path, map_location="cpu")
sd = {}
for k in sd_raw['module']:
sd[k[len('module.'):]] = sd_raw['module'][k]
elif path.endswith("safetensors"):
sd = load_safetensors(path)
else:
raise NotImplementedError
# missing, unexpected = self.load_state_dict(sd, strict=True)
missing, unexpected = self.load_state_dict(sd, strict=False)
print(
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
)
if len(missing) > 0:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected Keys: {unexpected}")
@torch.no_grad()
def add_custom_cond(self, batch, infer=False):
batch['num_video_frames'] = self.num_samples
image = batch['video'][:, :, 0]
batch['cond_frames_without_noise'] = image.half()
N = batch['video'].shape[0]
if not infer:
cond_aug = ((-3.0) + (0.5) * torch.randn((N,))).exp().cuda().half()
else:
cond_aug = torch.full((N, ), 0.02).cuda().half()
batch['cond_aug'] = cond_aug
batch['cond_frames'] = (image + rearrange(cond_aug, 'b -> b 1 1 1') * torch.randn_like(image)).half()
# for dataset without indicator
if not 'image_only_indicator' in batch:
batch['image_only_indicator'] = torch.zeros((N, self.num_samples)).cuda().half()
return batch
def shared_step(self, batch: Dict) -> Any:
frames = self.get_input(batch) # b c t h w
batch = self.add_custom_cond(batch)
frames_reshape = rearrange(frames, 'b c t h w -> (b t) c h w')
x = self.encode_first_stage(frames_reshape)
batch["global_step"] = self.global_step
with torch.autocast(device_type='cuda', dtype=torch.float16):
loss, loss_dict = self(x, batch)
return loss, loss_dict
@torch.no_grad()
def log_images(
self,
batch: Dict,
N: int = 8,
sample: bool = True,
ucg_keys: List[str] = None,
**kwargs,
) -> Dict:
conditioner_input_keys = [e.input_key for e in self.conditioner.embedders]
if ucg_keys:
assert all(map(lambda x: x in conditioner_input_keys, ucg_keys)), (
"Each defined ucg key for sampling must be in the provided conditioner input keys,"
f"but we have {ucg_keys} vs. {conditioner_input_keys}"
)
else:
ucg_keys = conditioner_input_keys
log = dict()
frames = self.get_input(batch)
batch = self.add_custom_cond(batch, infer=True)
N = min(frames.shape[0], N)
frames = frames[:N]
x = rearrange(frames, 'b c t h w -> (b t) c h w')
c, uc = self.conditioner.get_unconditional_conditioning(
batch,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0
else [],
)
sampling_kwargs = {}
aes = c['vector'][:, -256-256-256]
cm1 = c['vector'][:, -256-256]
cm2 = c['vector'][:, -256-192]
cm3 = c['vector'][:, -256-128]
cm4 = c['vector'][:, -256-64]
caption = batch['caption'][:N]
for idx in range(N):
sub_str = str(aes[idx].item()) + '\n' + str(cm1[idx].item()) + '\n' + str(cm2[idx].item()) + '\n' + str(cm3[idx].item()) + '\n' + str(cm4[idx].item())
caption[idx] = sub_str + '\n' + caption[idx]
x = x.to(self.device)
z = self.encode_first_stage(x.half())
x_rec = self.decode_first_stage(z.half())
log["reconstructions-video"] = rearrange(x_rec, '(b t) c h w -> b c t h w', t=self.num_samples)
log["conditioning"] = log_txt_as_img((512, 512), caption, size=16)
for k in c:
if isinstance(c[k], torch.Tensor):
if k == 'concat':
c[k], uc[k] = map(lambda y: y[k][:N * self.num_samples].to(self.device), (c, uc))
else:
c[k], uc[k] = map(lambda y: y[k][:N].to(self.device), (c, uc))
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
N * 2, self.num_samples
).to(self.device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
def denoiser(input, sigma, c):
return self.denoiser(
self.model, input, sigma, c, **additional_model_inputs
)
if sample:
with self.ema_scope("Plotting"):
with torch.autocast(device_type='cuda', dtype=torch.float16):
randn = torch.randn(z.shape, device=self.device)
samples = self.sampler(denoiser, randn, cond=c, uc=uc)
samples = self.decode_first_stage(samples.half())
log["samples-video"] = rearrange(samples, '(b t) c h w -> b c t h w', t=self.num_samples)
return log
def configure_optimizers(self):
lr = self.learning_rate
if 'all' in self.trained_param_keys:
params = list(self.model.parameters())
else:
names = []
params = []
for name, param in self.model.named_parameters():
flag = False
for k in self.trained_param_keys:
if k in name:
names += [name]
params += [param]
flag = True
if flag:
break
print(names)
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
params = params + list(embedder.parameters())
opt = self.instantiate_optimizer_from_config(params, lr, self.optimizer_config)
if self.scheduler_config is not None:
scheduler = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
scheduler = [
{
"scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule),
"interval": "step",
"frequency": 1,
}
]
return [opt], scheduler
return opt
|