Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# based on https://github.com/isl-org/MiDaS | |
import cv2 | |
import torch | |
import torch.nn as nn | |
from torchvision.transforms import Compose | |
from .dpt_depth import DPTDepthModel | |
from .midas_net import MidasNet | |
from .midas_net_custom import MidasNet_small | |
from .transforms import NormalizeImage, PrepareForNet, Resize | |
# ISL_PATHS = { | |
# "dpt_large": "dpt_large-midas-2f21e586.pt", | |
# "dpt_hybrid": "dpt_hybrid-midas-501f0c75.pt", | |
# "midas_v21": "", | |
# "midas_v21_small": "", | |
# } | |
# remote_model_path = | |
# "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt" | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
def load_midas_transform(model_type): | |
# https://github.com/isl-org/MiDaS/blob/master/run.py | |
# load transform only | |
if model_type == 'dpt_large': # DPT-Large | |
net_w, net_h = 384, 384 | |
resize_mode = 'minimal' | |
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], | |
std=[0.5, 0.5, 0.5]) | |
elif model_type == 'dpt_hybrid': # DPT-Hybrid | |
net_w, net_h = 384, 384 | |
resize_mode = 'minimal' | |
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], | |
std=[0.5, 0.5, 0.5]) | |
elif model_type == 'midas_v21': | |
net_w, net_h = 384, 384 | |
resize_mode = 'upper_bound' | |
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
elif model_type == 'midas_v21_small': | |
net_w, net_h = 256, 256 | |
resize_mode = 'upper_bound' | |
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
else: | |
assert False, f"model_type '{model_type}' not implemented, use: --model_type large" | |
transform = Compose([ | |
Resize( | |
net_w, | |
net_h, | |
resize_target=None, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=32, | |
resize_method=resize_mode, | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
normalization, | |
PrepareForNet(), | |
]) | |
return transform | |
def load_model(model_type, model_path): | |
# https://github.com/isl-org/MiDaS/blob/master/run.py | |
# load network | |
# model_path = ISL_PATHS[model_type] | |
if model_type == 'dpt_large': # DPT-Large | |
model = DPTDepthModel( | |
path=model_path, | |
backbone='vitl16_384', | |
non_negative=True, | |
) | |
net_w, net_h = 384, 384 | |
resize_mode = 'minimal' | |
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], | |
std=[0.5, 0.5, 0.5]) | |
elif model_type == 'dpt_hybrid': # DPT-Hybrid | |
model = DPTDepthModel( | |
path=model_path, | |
backbone='vitb_rn50_384', | |
non_negative=True, | |
) | |
net_w, net_h = 384, 384 | |
resize_mode = 'minimal' | |
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], | |
std=[0.5, 0.5, 0.5]) | |
elif model_type == 'midas_v21': | |
model = MidasNet(model_path, non_negative=True) | |
net_w, net_h = 384, 384 | |
resize_mode = 'upper_bound' | |
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
elif model_type == 'midas_v21_small': | |
model = MidasNet_small(model_path, | |
features=64, | |
backbone='efficientnet_lite3', | |
exportable=True, | |
non_negative=True, | |
blocks={'expand': True}) | |
net_w, net_h = 256, 256 | |
resize_mode = 'upper_bound' | |
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
else: | |
print( | |
f"model_type '{model_type}' not implemented, use: --model_type large" | |
) | |
assert False | |
transform = Compose([ | |
Resize( | |
net_w, | |
net_h, | |
resize_target=None, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=32, | |
resize_method=resize_mode, | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
normalization, | |
PrepareForNet(), | |
]) | |
return model.eval(), transform | |
class MiDaSInference(nn.Module): | |
MODEL_TYPES_TORCH_HUB = ['DPT_Large', 'DPT_Hybrid', 'MiDaS_small'] | |
MODEL_TYPES_ISL = [ | |
'dpt_large', | |
'dpt_hybrid', | |
'midas_v21', | |
'midas_v21_small', | |
] | |
def __init__(self, model_type, model_path): | |
super().__init__() | |
assert (model_type in self.MODEL_TYPES_ISL) | |
model, _ = load_model(model_type, model_path) | |
self.model = model | |
self.model.train = disabled_train | |
def forward(self, x): | |
with torch.no_grad(): | |
prediction = self.model(x) | |
return prediction | |