akjedidtz commited on
Commit
9266b14
·
verified ·
1 Parent(s): 8c6eb23

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +136 -60
app.py CHANGED
@@ -1,64 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ Hugging Face's logo
2
+ Hugging Face
3
+ Search models, datasets, users...
4
+ Models
5
+ Datasets
6
+ Spaces
7
+ Posts
8
+ Docs
9
+ Solutions
10
+ Pricing
11
+
12
+
13
+
14
+ Spaces:
15
+
16
+ KingNish
17
+ /
18
+ Realtime-whisper-large-v3-turbo
19
+
20
+
21
+ like
22
+ 254
23
+ App
24
+ Files
25
+ Community
26
+ 5
27
+ Realtime-whisper-large-v3-turbo
28
+ /
29
+ app.py
30
+
31
+ KingNish's picture
32
+ KingNish
33
+ Update app.py
34
+ fc21d85
35
+ verified
36
+ about 1 month ago
37
+ raw
38
+
39
+ Copy download link
40
+ history
41
+ blame
42
+ contribute
43
+ delete
44
+
45
+ 5.6 kB
46
+ import spaces
47
+ import torch
48
  import gradio as gr
49
+ import tempfile
50
+ import os
51
+ import uuid
52
+ import scipy.io.wavfile
53
+ import time
54
+ import numpy as np
55
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperTokenizer, pipeline
56
+ import subprocess
57
+ subprocess.run(
58
+ "pip install flash-attn --no-build-isolation",
59
+ env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
60
+ shell=True,
61
+ )
62
+
63
+ device = "cuda" if torch.cuda.is_available() else "cpu"
64
+ torch_dtype = torch.float16
65
+ MODEL_NAME = "openai/whisper-large-v3-turbo"
66
+
67
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
68
+ MODEL_NAME, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="flash_attention_2"
69
+ )
70
+ model.to(device)
71
+
72
+ processor = AutoProcessor.from_pretrained(MODEL_NAME)
73
+ tokenizer = WhisperTokenizer.from_pretrained(MODEL_NAME)
74
+
75
+ pipe = pipeline(
76
+ task="automatic-speech-recognition",
77
+ model=model,
78
+ tokenizer=tokenizer,
79
+ feature_extractor=processor.feature_extractor,
80
+ chunk_length_s=10,
81
+ torch_dtype=torch_dtype,
82
+ device=device,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  )
84
 
85
+ @spaces.GPU
86
+ def transcribe(inputs, previous_transcription):
87
+ start_time = time.time()
88
+ try:
89
+ filename = f"{uuid.uuid4().hex}.wav"
90
+ sample_rate, audio_data = inputs
91
+ scipy.io.wavfile.write(filename, sample_rate, audio_data)
92
+
93
+ transcription = pipe(filename)["text"]
94
+ previous_transcription += transcription
95
+
96
+ end_time = time.time()
97
+ latency = end_time - start_time
98
+ return previous_transcription, f"{latency:.2f}"
99
+ except Exception as e:
100
+ print(f"Error during Transcription: {e}")
101
+ return previous_transcription, "Error"
102
+
103
+ @spaces.GPU
104
+ def translate_and_transcribe(inputs, previous_transcription, target_language):
105
+ start_time = time.time()
106
+ try:
107
+ filename = f"{uuid.uuid4().hex}.wav"
108
+ sample_rate, audio_data = inputs
109
+ scipy.io.wavfile.write(filename, sample_rate, audio_data)
110
+
111
+ translation = pipe(filename, generate_kwargs={"task": "translate", "language": target_language} )["text"]
112
+
113
+ previous_transcription += translation
114
+
115
+ end_time = time.time()
116
+ latency = end_time - start_time
117
+ return previous_transcription, f"{latency:.2f}"
118
+ except Exception as e:
119
+ print(f"Error during Translation and Transcription: {e}")
120
+ return previous_transcription, "Error"
121
+
122
+ def clear():
123
+ return ""
124
+
125
+ with gr.Blocks() as microphone:
126
+ with gr.Column():
127
+ gr.Markdown(f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.")
128
+ with gr.Row():
129
+ input_audio_microphone = gr.Audio(streaming=True)
130
+ output = gr.Textbox(label="Transcription", value="")
131
+ latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0)
132
+ with gr.Row():
133
+ clear_button = gr.Button("Clear Output")
134
+
135
+ input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output, latency_textbox], time_limit=45, stream_every=2, concurrency_limit=None)
136
+ clear_button.click(clear, outputs=[output])
137
+
138
+
139
 
140
+ demo.launch()