akridge's picture
Upload app.py
09e742d verified
import glob
import gradio as gr
import torch
from transformers import ViTForImageClassification, AutoImageProcessor
from PIL import Image, ImageDraw, ImageFont
import random
import os
# βœ… Load model and processor from Hugging Face
model_name = "akridge/noaa-esd-coral-bleaching-vit-classifier-v1"
model = ViTForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name, use_fast=True)
# πŸ—‚οΈ Ensure id2label keys are integers and labels are uppercase
id2label = {int(k): v.upper() for k, v in model.config.id2label.items()}
# 🎨 Label colors (RGBA)
LABEL_COLORS = {
"CORAL": ((0, 0, 255, 80), (0, 0, 200)), # Fill: Blue transparent, Border: Dark blue
"CORAL_BL": ((255, 255, 255, 150), (150, 150, 150)), # Fill: White transparent, Border: Gray
}
def predict_and_overlay(image, rows=2, cols=5, patch_size=224):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device).eval()
# βœ… Load image
image = image.convert('RGB')
width, height = image.size
scale_factor = max(width, height) / 800
font_size = max(12, int(scale_factor * 8))
border_width = max(3, int(scale_factor * 3))
# πŸ–ŒοΈ Create overlay
overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
overlay_draw = ImageDraw.Draw(overlay)
# βœ… Generate sampled points
cell_width, cell_height = width / cols, height / rows
sampled_points = [
(random.randint(int(col * cell_width), int((col + 1) * cell_width - 1)),
random.randint(int(row * cell_height), int((row + 1) * cell_height - 1)))
for row in range(rows) for col in range(cols)
]
predictions = []
# βœ… Load font
try:
font = ImageFont.truetype("arial.ttf", size=font_size)
except IOError:
font = ImageFont.load_default()
# πŸ” Predict and draw patches
for x, y in sampled_points:
left, upper = max(0, x - patch_size // 2), max(0, y - patch_size // 2)
right, lower = min(width, left + patch_size), min(height, upper + patch_size)
# 🧠 Predict label
patch = image.crop((left, upper, right, lower))
inputs = processor(images=patch, return_tensors="pt").to(device)
with torch.no_grad():
pred_id = model(**inputs).logits.argmax(-1).item()
pred_label = id2label.get(pred_id, "UNKNOWN")
predictions.append(pred_label)
# 🎨 Fill and border colors
fill_color, border_color = LABEL_COLORS.get(pred_label, ((200, 200, 200, 100), (100, 100, 100)))
# 🟦 Draw filled rectangle and label
overlay_draw.rectangle([(left, upper), (right, lower)], fill=fill_color, outline=border_color, width=border_width)
label_text = pred_label
bbox = overlay_draw.textbbox((0, 0), label_text, font=font)
text_width, text_height = bbox[2] - bbox[0], bbox[3] - bbox[1]
text_bg_coords = [(left, upper - text_height - 6), (left + text_width + 6, upper)]
overlay_draw.rectangle(text_bg_coords, fill=(0, 0, 0, 200))
overlay_draw.text((left + 3, upper - text_height - 4), label_text, fill="white", font=font)
# πŸ–ΌοΈ Merge overlay with original
final_image = Image.alpha_composite(image.convert('RGBA'), overlay).convert('RGB')
return final_image, ", ".join(predictions)
# Load example images from coral_images folder
example_images = glob.glob("coral_images/*.[jp][pn]g")
# πŸš€ Gradio interface
def gradio_interface(image, rows=2, cols=5):
if image is None:
return None, "No image uploaded. Please upload an image or select from examples."
final_image, predictions = predict_and_overlay(image, rows, cols)
return final_image, predictions
app_title = "🌊 NOAA ESD Coral Bleaching Classifier Demo"
app_description = """
Upload a coral image or select from example images to sample points and predict coral bleaching using the classifier model.
**Model:** [akridge/noaa-esd-coral-bleaching-vit-classifier-v1](https://huggingface.co/akridge/noaa-esd-coral-bleaching-vit-classifier-v1)
**Dataset:** [NOAA-ESD-CORAL-Bleaching-Dataset](https://huggingface.co/datasets/akridge/NOAA-ESD-CORAL-Bleaching-Dataset)
"""
# Custom CSS for improved styling
custom_css = """
.gradio-container h1 {
font-size: 2.2em;
text-align: center;
}
.gradio-container p {
font-size: 1.2em;
}
.gradio-container .gr-button {
font-size: 1.2em;
}
"""
with gr.Blocks(theme=gr.themes.Ocean(), css=custom_css, title=app_title) as interface:
gr.Markdown(f"<h1>{app_title}</h1>")
gr.Markdown(app_description)
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Coral Image")
result_output = gr.Image(type="pil", label="Predicted Results")
with gr.Row():
rows_slider = gr.Slider(1, 10, value=2, label="Rows of Sample Points")
cols_slider = gr.Slider(1, 10, value=5, label="Columns of Sample Points")
with gr.Row():
run_button = gr.Button("Run Prediction", variant="primary")
clear_button = gr.Button("Clear")
# Add example images section
gr.Examples(
examples=[[img] for img in example_images],
inputs=[image_input],
outputs=[result_output],
examples_per_page=6,
label="Example Coral Images"
)
# Define button actions
run_button.click(
fn=gradio_interface,
inputs=[image_input, rows_slider, cols_slider],
outputs=[result_output, gr.Textbox(label="Predictions")]
)
clear_button.click(lambda: (None, ""), outputs=[image_input, result_output])
interface.launch()