Upload 5 files
Browse files- .gitattributes +4 -0
- app.py +113 -0
- coral_images/00_example.png +3 -0
- coral_images/01_example.png +3 -0
- coral_images/02_example.png +3 -0
- coral_images/03_example.png +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
coral_images/00_example.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
coral_images/01_example.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
coral_images/02_example.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
coral_images/03_example.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import ViTForImageClassification, AutoImageProcessor
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
import random
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Load model and processor from Hugging Face
|
9 |
+
model_name = "akridge/noaa-esd-coral-bleaching-vit-classifier-v1"
|
10 |
+
model = ViTForImageClassification.from_pretrained(model_name)
|
11 |
+
processor = AutoImageProcessor.from_pretrained(model_name, use_fast=True)
|
12 |
+
|
13 |
+
# Ensure id2label keys are integers and labels are uppercase
|
14 |
+
id2label = {int(k): v.upper() for k, v in model.config.id2label.items()}
|
15 |
+
|
16 |
+
# Label colors (RGBA)
|
17 |
+
LABEL_COLORS = {
|
18 |
+
"CORAL": ((0, 0, 255, 80), (0, 0, 200)), # Fill: Blue transparent, Border: Dark blue
|
19 |
+
"CORAL_BL": ((255, 255, 255, 150), (150, 150, 150)) # Fill: White transparent, Border: Gray
|
20 |
+
}
|
21 |
+
|
22 |
+
def predict_and_overlay(image, rows=2, cols=5, patch_size=224):
|
23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
+
model.to(device).eval()
|
25 |
+
|
26 |
+
# Load image
|
27 |
+
image = image.convert('RGB')
|
28 |
+
width, height = image.size
|
29 |
+
scale_factor = max(width, height) / 800
|
30 |
+
font_size = max(12, int(scale_factor * 8))
|
31 |
+
border_width = max(3, int(scale_factor * 3))
|
32 |
+
|
33 |
+
# Create overlay
|
34 |
+
overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
|
35 |
+
overlay_draw = ImageDraw.Draw(overlay)
|
36 |
+
|
37 |
+
# Generate sampled points
|
38 |
+
cell_width, cell_height = width / cols, height / rows
|
39 |
+
sampled_points = [
|
40 |
+
(random.randint(int(col * cell_width), int((col + 1) * cell_width - 1)),
|
41 |
+
random.randint(int(row * cell_height), int((row + 1) * cell_height - 1)))
|
42 |
+
for row in range(rows) for col in range(cols)
|
43 |
+
]
|
44 |
+
|
45 |
+
predictions = []
|
46 |
+
|
47 |
+
# Load font
|
48 |
+
try:
|
49 |
+
font = ImageFont.truetype("arial.ttf", size=font_size)
|
50 |
+
except IOError:
|
51 |
+
font = ImageFont.load_default()
|
52 |
+
|
53 |
+
# Predict and draw patches
|
54 |
+
for x, y in sampled_points:
|
55 |
+
left, upper = max(0, x - patch_size // 2), max(0, y - patch_size // 2)
|
56 |
+
right, lower = min(width, left + patch_size), min(height, upper + patch_size)
|
57 |
+
|
58 |
+
# Predict label
|
59 |
+
patch = image.crop((left, upper, right, lower))
|
60 |
+
inputs = processor(images=patch, return_tensors="pt").to(device)
|
61 |
+
with torch.no_grad():
|
62 |
+
pred_id = model(**inputs).logits.argmax(-1).item()
|
63 |
+
pred_label = id2label.get(pred_id, "UNKNOWN")
|
64 |
+
predictions.append(pred_label)
|
65 |
+
|
66 |
+
# Fill and border colors
|
67 |
+
fill_color, border_color = LABEL_COLORS.get(pred_label, ((200, 200, 200, 100), (100, 100, 100)))
|
68 |
+
|
69 |
+
# Draw filled rectangle and label
|
70 |
+
overlay_draw.rectangle([(left, upper), (right, lower)], fill=fill_color, outline=border_color, width=border_width)
|
71 |
+
|
72 |
+
label_text = pred_label
|
73 |
+
bbox = overlay_draw.textbbox((0, 0), label_text, font=font)
|
74 |
+
text_width, text_height = bbox[2] - bbox[0], bbox[3] - bbox[1]
|
75 |
+
text_bg_coords = [(left, upper - text_height - 6), (left + text_width + 6, upper)]
|
76 |
+
|
77 |
+
overlay_draw.rectangle(text_bg_coords, fill=(0, 0, 0, 200))
|
78 |
+
overlay_draw.text((left + 3, upper - text_height - 4), label_text, fill="white", font=font)
|
79 |
+
|
80 |
+
# Merge overlay with original
|
81 |
+
final_image = Image.alpha_composite(image.convert('RGBA'), overlay).convert('RGB')
|
82 |
+
|
83 |
+
return final_image, predictions
|
84 |
+
|
85 |
+
# Function to load example images
|
86 |
+
def load_example_image(example_image):
|
87 |
+
return Image.open(example_image)
|
88 |
+
|
89 |
+
# List example images
|
90 |
+
example_images = [os.path.join("example_images", img) for img in os.listdir("coral_images")]
|
91 |
+
|
92 |
+
# Gradio interface
|
93 |
+
def gradio_interface(image, rows=2, cols=5):
|
94 |
+
final_image, predictions = predict_and_overlay(image, rows, cols)
|
95 |
+
return final_image, ", ".join(predictions)
|
96 |
+
|
97 |
+
iface = gr.Interface(
|
98 |
+
fn=gradio_interface,
|
99 |
+
inputs=[
|
100 |
+
gr.inputs.Image(type="pil", label="Upload Coral Image", optional=True),
|
101 |
+
gr.inputs.Dropdown(choices=example_images, label="Or Select an Example Image"),
|
102 |
+
gr.inputs.Slider(1, 10, value=2, step=1, label="Rows of Sample Points"),
|
103 |
+
gr.inputs.Slider(1, 10, value=5, step=1, label="Columns of Sample Points"),
|
104 |
+
],
|
105 |
+
outputs=[
|
106 |
+
gr.outputs.Image(type="pil", label="Image with Predictions"),
|
107 |
+
gr.outputs.Textbox(label="Predictions")
|
108 |
+
],
|
109 |
+
title="NOAA ESD Coral Bleaching ViT Classifier",
|
110 |
+
description="Upload an image or select an example to sample points/patches and predict coral bleaching using the ViT classifier model hosted on Hugging Face."
|
111 |
+
)
|
112 |
+
|
113 |
+
iface.launch()
|
coral_images/00_example.png
ADDED
![]() |
Git LFS Details
|
coral_images/01_example.png
ADDED
![]() |
Git LFS Details
|
coral_images/02_example.png
ADDED
![]() |
Git LFS Details
|
coral_images/03_example.png
ADDED
![]() |
Git LFS Details
|