akritRihal commited on
Commit
99f482d
·
verified ·
1 Parent(s): c11be1a

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +106 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ from transformers import ViTFeatureExtractor, ViTForImageClassification
3
+ import warnings
4
+ import requests
5
+ import gradio as gr
6
+ import os
7
+ from dotenv import load_dotenv
8
+ load_dotenv()
9
+
10
+ warnings.filterwarnings('ignore')
11
+
12
+ # Load the pre-trained Vision Transformer model and feature extractor
13
+ model_name = "google/vit-base-patch16-224"
14
+ feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
15
+ model = ViTForImageClassification.from_pretrained(model_name)
16
+
17
+ # API key for the nutrition information
18
+ api_key = os.getenv('NUTRITION_API')
19
+
20
+ def identify_image(image_path):
21
+ """Identify the food item in the image."""
22
+ image = Image.open(image_path)
23
+ inputs = feature_extractor(images=image, return_tensors="pt")
24
+ outputs = model(**inputs)
25
+ logits = outputs.logits
26
+ predicted_class_idx = logits.argmax(-1).item()
27
+ predicted_label = model.config.id2label[predicted_class_idx]
28
+ food_name = predicted_label.split(',')[0]
29
+ return food_name
30
+
31
+ def get_calories(food_name):
32
+ """Get the calorie information of the identified food item."""
33
+ api_url = 'https://api.api-ninjas.com/v1/nutrition?query={}'.format(food_name)
34
+ response = requests.get(api_url, headers={'X-Api-Key': api_key})
35
+ if response.status_code == requests.codes.ok:
36
+ nutrition_info = response.json()
37
+ else:
38
+ nutrition_info = {"Error": response.status_code, "Message": response.text}
39
+ return nutrition_info
40
+
41
+ def format_nutrition_info(nutrition_info):
42
+ """Format the nutritional information into an HTML table."""
43
+ if "Error" in nutrition_info:
44
+ return f"Error: {nutrition_info['Error']} - {nutrition_info['Message']}"
45
+
46
+ if len(nutrition_info) == 0:
47
+ return "No nutritional information found."
48
+
49
+ nutrition_data = nutrition_info[0]
50
+ table = f"""
51
+ <table border="1" style="width: 100%; border-collapse: collapse;">
52
+ <tr><th colspan="4" style="text-align: center;"><b>Nutrition Facts</b></th></tr>
53
+ <tr><td colspan="4" style="text-align: center;"><b>Food Name: {nutrition_data['name']}</b></td></tr>
54
+ <tr>
55
+ <td style="text-align: left;"><b>Calories</b></td><td style="text-align: right;">{nutrition_data['calories']}</td>
56
+ <td style="text-align: left;"><b>Serving Size (g)</b></td><td style="text-align: right;">{nutrition_data['serving_size_g']}</td>
57
+ </tr>
58
+ <tr>
59
+ <td style="text-align: left;"><b>Total Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_total_g']}</td>
60
+ <td style="text-align: left;"><b>Saturated Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_saturated_g']}</td>
61
+ </tr>
62
+ <tr>
63
+ <td style="text-align: left;"><b>Protein (g)</b></td><td style="text-align: right;">{nutrition_data['protein_g']}</td>
64
+ <td style="text-align: left;"><b>Sodium (mg)</b></td><td style="text-align: right;">{nutrition_data['sodium_mg']}</td>
65
+ </tr>
66
+ <tr>
67
+ <td style="text-align: left;"><b>Potassium (mg)</b></td><td style="text-align: right;">{nutrition_data['potassium_mg']}</td>
68
+ <td style="text-align: left;"><b>Cholesterol (mg)</b></td><td style="text-align: right;">{nutrition_data['cholesterol_mg']}</td>
69
+ </tr>
70
+ <tr>
71
+ <td style="text-align: left;"><b>Total Carbohydrates (g)</b></td><td style="text-align: right;">{nutrition_data['carbohydrates_total_g']}</td>
72
+ <td style="text-align: left;"><b>Fiber (g)</b></td><td style="text-align: right;">{nutrition_data['fiber_g']}</td>
73
+ </tr>
74
+ <tr>
75
+ <td style="text-align: left;"><b>Sugar (g)</b></td><td style="text-align: right;">{nutrition_data['sugar_g']}</td>
76
+ <td></td><td></td>
77
+ </tr>
78
+ </table>
79
+ """
80
+ return table
81
+
82
+ def main_process(image_path):
83
+ """Identify the food item and fetch its calorie information."""
84
+ food_name = identify_image(image_path)
85
+ nutrition_info = get_calories(food_name)
86
+ formatted_nutrition_info = format_nutrition_info(nutrition_info)
87
+ return formatted_nutrition_info
88
+
89
+ # Define the Gradio interface
90
+ def gradio_interface(image):
91
+ formatted_nutrition_info = main_process(image)
92
+ return formatted_nutrition_info
93
+
94
+ # Create the Gradio UI
95
+ iface = gr.Interface(
96
+ fn=gradio_interface,
97
+ inputs=gr.Image(type="filepath"),
98
+ outputs="html",
99
+ title="Food Identification and Nutrition Info",
100
+ description="Upload an image of food to get nutritional information.",
101
+ allow_flagging="never" # Disable flagging
102
+ )
103
+
104
+ # Launch the Gradio app
105
+ if __name__ == "__main__":
106
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio
2
+ transformers
3
+ torch
4
+ torchvision
5
+ requests
6
+ python-dotenv