File size: 1,496 Bytes
8cd6f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Trainer, TrainingArguments
from datasets import load_dataset

# Download model
model_name = "facebook/wav2vec2-base-960h"
model = Wav2Vec2ForCTC.from_pretrained(model_name)
processor = Wav2Vec2Processor.from_pretrained(model_name)

# Load dataset (replace with your dataset)
dataset = load_dataset("librispeech_asr", "clean", split="train.100")  # Example dataset

# Preprocess function
def preprocess_function(examples):
    audio = examples["audio"]
    inputs = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt", padding=True)
    with processor.as_target_processor():
        labels = processor(examples["text"], return_tensors="pt", padding=True)
    return {
        "input_values": inputs["input_values"][0],
        "labels": labels["input_ids"][0]
    }

train_dataset = dataset.map(preprocess_function, remove_columns=dataset.column_names)

# Training arguments
training_args = TrainingArguments(
    output_dir="./sst_finetuned",
    per_device_train_batch_size=8,
    num_train_epochs=3,
    save_steps=500,
    logging_steps=10,
)

# Initialize Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
)

# Fine-tune
trainer.train()

# Save fine-tuned model
trainer.save_model("./sst_finetuned")
processor.save_pretrained("./sst_finetuned")

print("SST model fine-tuned and saved to './sst_finetuned'. Upload to models/sst_model in your Space.")