Initial upload of TTS, SST, and LLM models with API
Browse files- README.md +41 -0
- app.py +74 -0
- download_and_finetune_sst.py +0 -0
- download_and_finetune_tts.py +0 -0
- models/sst_model/download_and_finetune_sst.py +48 -0
- models/tts_model/download_and_finetune_tts.py +44 -0
- nuera/models/llama.gguf +0 -0
- requirements.txt +9 -0
README.md
CHANGED
@@ -10,3 +10,44 @@ pinned: false
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
13 |
+
# My AI Models Space
|
14 |
+
|
15 |
+
This Hugging Face Space hosts TTS, SST, and LLM models with API endpoints.
|
16 |
+
|
17 |
+
## Setup
|
18 |
+
|
19 |
+
1. **Clone the repository** to your Hugging Face Space.
|
20 |
+
2. **Install dependencies**: `pip install -r requirements.txt`.
|
21 |
+
3. **Prepare models**:
|
22 |
+
- **TTS**: Run `download_and_finetune_tts.py` externally, then upload `./tts_finetuned` to `models/tts_model`. If not uploaded, uses `parler-tts/parler-tts-mini-v1`.
|
23 |
+
- **SST**: Run `download_and_finetune_sst.py` externally, then upload `./sst_finetuned` to `models/sst_model`. If not uploaded, uses `facebook/wav2vec2-base-960h`.
|
24 |
+
- **LLM**: Download a Llama GGUF file (e.g., from `TheBloke/Llama-2-7B-GGUF` on Hugging Face Hub) and upload to `models/llama.gguf`. Required for LLM to work.
|
25 |
+
4. **Deploy**: Push to your Space, and it will run `app.py`.
|
26 |
+
|
27 |
+
## API Endpoints
|
28 |
+
|
29 |
+
- **POST /tts**
|
30 |
+
- **Request**: `{"text": "Your text here"}`
|
31 |
+
- **Response**: Audio file (WAV)
|
32 |
+
- **Example**: `curl -X POST -H "Content-Type: application/json" -d '{"text":"Hello"}' http://your-space.hf.space/tts --output output.wav`
|
33 |
+
|
34 |
+
- **POST /sst**
|
35 |
+
- **Request**: Audio file upload
|
36 |
+
- **Response**: `{"text": "transcribed text"}`
|
37 |
+
- **Example**: `curl -X POST -F "[email protected]" http://your-space.hf.space/sst`
|
38 |
+
|
39 |
+
- **POST /llm**
|
40 |
+
- **Request**: `{"prompt": "Your prompt here"}`
|
41 |
+
- **Response**: `{"text": "generated text"}`
|
42 |
+
- **Example**: `curl -X POST -H "Content-Type: application/json" -d '{"prompt":"Tell me a story"}' http://your-space.hf.space/llm`
|
43 |
+
|
44 |
+
## Fine-Tuning
|
45 |
+
|
46 |
+
- **TTS**: Edit `download_and_finetune_tts.py` with your dataset, run externally, and upload the result.
|
47 |
+
- **SST**: Edit `download_and_finetune_sst.py` with your dataset, run externally, and upload the result.
|
48 |
+
- **LLM**: Llama.cpp is used for inference only. For fine-tuning, use tools like LoRA with Transformers externally, convert to GGUF, and upload.
|
49 |
+
|
50 |
+
## Notes
|
51 |
+
|
52 |
+
- Ensure GGUF file for LLM is manageable (e.g., quantized versions like `llama-2-7b.Q4_K_M.gguf`).
|
53 |
+
- Fine-tuning requires significant resources; perform it outside Spaces.
|
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Response
|
2 |
+
from transformers import ParlerTTSForConditionalGeneration, AutoTokenizer
|
3 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
4 |
+
from llama_cpp import Llama
|
5 |
+
import torch
|
6 |
+
import soundfile as sf
|
7 |
+
import io
|
8 |
+
import os
|
9 |
+
from pydantic import BaseModel
|
10 |
+
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
# Load models
|
14 |
+
# TTS: Use local fine-tuned model if available, else load from Hub
|
15 |
+
if os.path.exists("./models/tts_model"):
|
16 |
+
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("./models/tts_model")
|
17 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("./models/tts_model")
|
18 |
+
else:
|
19 |
+
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1")
|
20 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
|
21 |
+
|
22 |
+
# SST: Use local fine-tuned model if available, else load from Hub
|
23 |
+
if os.path.exists("./models/sst_model"):
|
24 |
+
sst_model = Wav2Vec2ForCTC.from_pretrained("./models/sst_model")
|
25 |
+
sst_processor = Wav2Vec2Processor.from_pretrained("./models/sst_model")
|
26 |
+
else:
|
27 |
+
sst_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
28 |
+
sst_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
29 |
+
|
30 |
+
# LLM: Use local GGUF file if available, else raise error (must be uploaded)
|
31 |
+
if os.path.exists("./models/llama.gguf"):
|
32 |
+
llm = Llama("./models/llama.gguf")
|
33 |
+
else:
|
34 |
+
raise FileNotFoundError("Please upload llama.gguf to models/ directory")
|
35 |
+
|
36 |
+
# Request models
|
37 |
+
class TTSRequest(BaseModel):
|
38 |
+
text: str
|
39 |
+
|
40 |
+
class LLMRequest(BaseModel):
|
41 |
+
prompt: str
|
42 |
+
|
43 |
+
# API Endpoints
|
44 |
+
@app.post("/tts")
|
45 |
+
async def tts_endpoint(request: TTSRequest):
|
46 |
+
"""Convert text to speech and return audio."""
|
47 |
+
text = request.text
|
48 |
+
inputs = tts_tokenizer(text, return_tensors="pt")
|
49 |
+
with torch.no_grad():
|
50 |
+
audio = tts_model.generate(**inputs)
|
51 |
+
audio = audio.squeeze().cpu().numpy()
|
52 |
+
buffer = io.BytesIO()
|
53 |
+
sf.write(buffer, audio, 22050, format="WAV")
|
54 |
+
buffer.seek(0)
|
55 |
+
return Response(content=buffer.getvalue(), media_type="audio/wav")
|
56 |
+
|
57 |
+
@app.post("/sst")
|
58 |
+
async def sst_endpoint(file: UploadFile = File(...)):
|
59 |
+
"""Convert speech to text and return transcription."""
|
60 |
+
audio_bytes = await file.read()
|
61 |
+
audio, sr = sf.read(io.BytesIO(audio_bytes))
|
62 |
+
inputs = sst_processor(audio, sampling_rate=sr, return_tensors="pt")
|
63 |
+
with torch.no_grad():
|
64 |
+
logits = sst_model(inputs.input_values).logits
|
65 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
66 |
+
transcription = sst_processor.batch_decode(predicted_ids)[0]
|
67 |
+
return {"text": transcription}
|
68 |
+
|
69 |
+
@app.post("/llm")
|
70 |
+
async def llm_endpoint(request: LLMRequest):
|
71 |
+
"""Generate text from a prompt using Llama.cpp."""
|
72 |
+
prompt = request.prompt
|
73 |
+
output = llm(prompt, max_tokens=50)
|
74 |
+
return {"text": output["choices"][0]["text"]}
|
download_and_finetune_sst.py
ADDED
File without changes
|
download_and_finetune_tts.py
ADDED
File without changes
|
models/sst_model/download_and_finetune_sst.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
# Download model
|
5 |
+
model_name = "facebook/wav2vec2-base-960h"
|
6 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
7 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Load dataset (replace with your dataset)
|
10 |
+
dataset = load_dataset("librispeech_asr", "clean", split="train.100") # Example dataset
|
11 |
+
|
12 |
+
# Preprocess function
|
13 |
+
def preprocess_function(examples):
|
14 |
+
audio = examples["audio"]
|
15 |
+
inputs = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt", padding=True)
|
16 |
+
with processor.as_target_processor():
|
17 |
+
labels = processor(examples["text"], return_tensors="pt", padding=True)
|
18 |
+
return {
|
19 |
+
"input_values": inputs["input_values"][0],
|
20 |
+
"labels": labels["input_ids"][0]
|
21 |
+
}
|
22 |
+
|
23 |
+
train_dataset = dataset.map(preprocess_function, remove_columns=dataset.column_names)
|
24 |
+
|
25 |
+
# Training arguments
|
26 |
+
training_args = TrainingArguments(
|
27 |
+
output_dir="./sst_finetuned",
|
28 |
+
per_device_train_batch_size=8,
|
29 |
+
num_train_epochs=3,
|
30 |
+
save_steps=500,
|
31 |
+
logging_steps=10,
|
32 |
+
)
|
33 |
+
|
34 |
+
# Initialize Trainer
|
35 |
+
trainer = Trainer(
|
36 |
+
model=model,
|
37 |
+
args=training_args,
|
38 |
+
train_dataset=train_dataset,
|
39 |
+
)
|
40 |
+
|
41 |
+
# Fine-tune
|
42 |
+
trainer.train()
|
43 |
+
|
44 |
+
# Save fine-tuned model
|
45 |
+
trainer.save_model("./sst_finetuned")
|
46 |
+
processor.save_pretrained("./sst_finetuned")
|
47 |
+
|
48 |
+
print("SST model fine-tuned and saved to './sst_finetuned'. Upload to models/sst_model in your Space.")
|
models/tts_model/download_and_finetune_tts.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import ParlerTTSForConditionalGeneration, AutoTokenizer, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
# Download model
|
5 |
+
model_name = "parler-tts/parler-tts-mini-v1"
|
6 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(model_name)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Load dataset (replace with your dataset)
|
10 |
+
dataset = load_dataset("lj_speech") # Example dataset; adjust as needed
|
11 |
+
|
12 |
+
# Preprocess function (customize based on your dataset)
|
13 |
+
def preprocess_function(examples):
|
14 |
+
# Tokenize text and prepare audio (example; adjust for your data)
|
15 |
+
inputs = tokenizer(examples["text"], return_tensors="pt", padding=True, truncation=True)
|
16 |
+
# Add audio processing if needed
|
17 |
+
return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"]}
|
18 |
+
|
19 |
+
train_dataset = dataset["train"].map(preprocess_function, batched=True)
|
20 |
+
|
21 |
+
# Training arguments
|
22 |
+
training_args = TrainingArguments(
|
23 |
+
output_dir="./tts_finetuned",
|
24 |
+
per_device_train_batch_size=8,
|
25 |
+
num_train_epochs=3,
|
26 |
+
save_steps=500,
|
27 |
+
logging_steps=10,
|
28 |
+
)
|
29 |
+
|
30 |
+
# Initialize Trainer
|
31 |
+
trainer = Trainer(
|
32 |
+
model=model,
|
33 |
+
args=training_args,
|
34 |
+
train_dataset=train_dataset,
|
35 |
+
)
|
36 |
+
|
37 |
+
# Fine-tune
|
38 |
+
trainer.train()
|
39 |
+
|
40 |
+
# Save fine-tuned model
|
41 |
+
trainer.save_model("./tts_finetuned")
|
42 |
+
tokenizer.save_pretrained("./tts_finetuned")
|
43 |
+
|
44 |
+
print("TTS model fine-tuned and saved to './tts_finetuned'. Upload to models/tts_model in your Space.")
|
nuera/models/llama.gguf
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
soundfile
|
6 |
+
numpy
|
7 |
+
llama-cpp-python
|
8 |
+
pydantic
|
9 |
+
datasets
|