Spaces:
Sleeping
Sleeping
Akshat Sanghvi
commited on
Add files
Browse files- Classifier.joblib +0 -0
- app.py +14 -0
- notebook.ipynb +505 -0
- requirements.txt +4 -0
- spam.csv +0 -0
Classifier.joblib
ADDED
Binary file (339 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from joblib import load
|
3 |
+
|
4 |
+
model = load("Classifier.joblib")
|
5 |
+
|
6 |
+
def pred(Email):
|
7 |
+
l = model.predict([Email])
|
8 |
+
if l[0]==1:
|
9 |
+
return "Spam β οΈ"
|
10 |
+
else:
|
11 |
+
return "π"
|
12 |
+
|
13 |
+
iface = gr.Interface(fn=pred, inputs="text", outputs="text", allow_flagging="never", description="Enter Your Message Below :")
|
14 |
+
iface.launch()
|
notebook.ipynb
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Importing Essential libraries : \n",
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"# import matplotlib.pyplot as plt"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 2,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [
|
19 |
+
{
|
20 |
+
"data": {
|
21 |
+
"text/html": [
|
22 |
+
"<div>\n",
|
23 |
+
"<style scoped>\n",
|
24 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
25 |
+
" vertical-align: middle;\n",
|
26 |
+
" }\n",
|
27 |
+
"\n",
|
28 |
+
" .dataframe tbody tr th {\n",
|
29 |
+
" vertical-align: top;\n",
|
30 |
+
" }\n",
|
31 |
+
"\n",
|
32 |
+
" .dataframe thead th {\n",
|
33 |
+
" text-align: right;\n",
|
34 |
+
" }\n",
|
35 |
+
"</style>\n",
|
36 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
37 |
+
" <thead>\n",
|
38 |
+
" <tr style=\"text-align: right;\">\n",
|
39 |
+
" <th></th>\n",
|
40 |
+
" <th>Category</th>\n",
|
41 |
+
" <th>Message</th>\n",
|
42 |
+
" </tr>\n",
|
43 |
+
" </thead>\n",
|
44 |
+
" <tbody>\n",
|
45 |
+
" <tr>\n",
|
46 |
+
" <th>0</th>\n",
|
47 |
+
" <td>ham</td>\n",
|
48 |
+
" <td>Go until jurong point, crazy.. Available only ...</td>\n",
|
49 |
+
" </tr>\n",
|
50 |
+
" <tr>\n",
|
51 |
+
" <th>1</th>\n",
|
52 |
+
" <td>ham</td>\n",
|
53 |
+
" <td>Ok lar... Joking wif u oni...</td>\n",
|
54 |
+
" </tr>\n",
|
55 |
+
" <tr>\n",
|
56 |
+
" <th>2</th>\n",
|
57 |
+
" <td>spam</td>\n",
|
58 |
+
" <td>Free entry in 2 a wkly comp to win FA Cup fina...</td>\n",
|
59 |
+
" </tr>\n",
|
60 |
+
" <tr>\n",
|
61 |
+
" <th>3</th>\n",
|
62 |
+
" <td>ham</td>\n",
|
63 |
+
" <td>U dun say so early hor... U c already then say...</td>\n",
|
64 |
+
" </tr>\n",
|
65 |
+
" <tr>\n",
|
66 |
+
" <th>4</th>\n",
|
67 |
+
" <td>ham</td>\n",
|
68 |
+
" <td>Nah I don't think he goes to usf, he lives aro...</td>\n",
|
69 |
+
" </tr>\n",
|
70 |
+
" </tbody>\n",
|
71 |
+
"</table>\n",
|
72 |
+
"</div>"
|
73 |
+
],
|
74 |
+
"text/plain": [
|
75 |
+
" Category Message\n",
|
76 |
+
"0 ham Go until jurong point, crazy.. Available only ...\n",
|
77 |
+
"1 ham Ok lar... Joking wif u oni...\n",
|
78 |
+
"2 spam Free entry in 2 a wkly comp to win FA Cup fina...\n",
|
79 |
+
"3 ham U dun say so early hor... U c already then say...\n",
|
80 |
+
"4 ham Nah I don't think he goes to usf, he lives aro..."
|
81 |
+
]
|
82 |
+
},
|
83 |
+
"execution_count": 2,
|
84 |
+
"metadata": {},
|
85 |
+
"output_type": "execute_result"
|
86 |
+
}
|
87 |
+
],
|
88 |
+
"source": [
|
89 |
+
"# importing data to work on :\n",
|
90 |
+
"dataset = pd.read_csv(\"spam.csv\")\n",
|
91 |
+
"dataset.head()"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": 3,
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [
|
99 |
+
{
|
100 |
+
"data": {
|
101 |
+
"text/plain": [
|
102 |
+
"(5572, 2)"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
"execution_count": 3,
|
106 |
+
"metadata": {},
|
107 |
+
"output_type": "execute_result"
|
108 |
+
}
|
109 |
+
],
|
110 |
+
"source": [
|
111 |
+
"dataset.shape"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 4,
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"data": {
|
121 |
+
"text/plain": [
|
122 |
+
"Index(['Category', 'Message'], dtype='object')"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
"execution_count": 4,
|
126 |
+
"metadata": {},
|
127 |
+
"output_type": "execute_result"
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"source": [
|
131 |
+
"dataset.columns"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": 5,
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [
|
139 |
+
{
|
140 |
+
"name": "stdout",
|
141 |
+
"output_type": "stream",
|
142 |
+
"text": [
|
143 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
144 |
+
"RangeIndex: 5572 entries, 0 to 5571\n",
|
145 |
+
"Data columns (total 2 columns):\n",
|
146 |
+
" # Column Non-Null Count Dtype \n",
|
147 |
+
"--- ------ -------------- ----- \n",
|
148 |
+
" 0 Category 5572 non-null object\n",
|
149 |
+
" 1 Message 5572 non-null object\n",
|
150 |
+
"dtypes: object(2)\n",
|
151 |
+
"memory usage: 87.2+ KB\n",
|
152 |
+
"None\n"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"data": {
|
157 |
+
"text/plain": [
|
158 |
+
"Category 0\n",
|
159 |
+
"Message 0\n",
|
160 |
+
"dtype: int64"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
"execution_count": 5,
|
164 |
+
"metadata": {},
|
165 |
+
"output_type": "execute_result"
|
166 |
+
}
|
167 |
+
],
|
168 |
+
"source": [
|
169 |
+
"# to check if there are NULL values in our dataset :\n",
|
170 |
+
"print(dataset.info())\n",
|
171 |
+
"dataset.isna().sum()"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"execution_count": 6,
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [
|
179 |
+
{
|
180 |
+
"data": {
|
181 |
+
"text/plain": [
|
182 |
+
"Category 2\n",
|
183 |
+
"Message 5157\n",
|
184 |
+
"dtype: int64"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
"execution_count": 6,
|
188 |
+
"metadata": {},
|
189 |
+
"output_type": "execute_result"
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"source": [
|
193 |
+
"# to check if there are values other than spam and ham :\n",
|
194 |
+
"dataset.nunique()"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": 7,
|
200 |
+
"metadata": {},
|
201 |
+
"outputs": [
|
202 |
+
{
|
203 |
+
"data": {
|
204 |
+
"text/html": [
|
205 |
+
"<div>\n",
|
206 |
+
"<style scoped>\n",
|
207 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
208 |
+
" vertical-align: middle;\n",
|
209 |
+
" }\n",
|
210 |
+
"\n",
|
211 |
+
" .dataframe tbody tr th {\n",
|
212 |
+
" vertical-align: top;\n",
|
213 |
+
" }\n",
|
214 |
+
"\n",
|
215 |
+
" .dataframe thead th {\n",
|
216 |
+
" text-align: right;\n",
|
217 |
+
" }\n",
|
218 |
+
"</style>\n",
|
219 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
220 |
+
" <thead>\n",
|
221 |
+
" <tr style=\"text-align: right;\">\n",
|
222 |
+
" <th></th>\n",
|
223 |
+
" <th>Category</th>\n",
|
224 |
+
" <th>Message</th>\n",
|
225 |
+
" <th>Spam</th>\n",
|
226 |
+
" </tr>\n",
|
227 |
+
" </thead>\n",
|
228 |
+
" <tbody>\n",
|
229 |
+
" <tr>\n",
|
230 |
+
" <th>0</th>\n",
|
231 |
+
" <td>ham</td>\n",
|
232 |
+
" <td>Go until jurong point, crazy.. Available only ...</td>\n",
|
233 |
+
" <td>0</td>\n",
|
234 |
+
" </tr>\n",
|
235 |
+
" <tr>\n",
|
236 |
+
" <th>1</th>\n",
|
237 |
+
" <td>ham</td>\n",
|
238 |
+
" <td>Ok lar... Joking wif u oni...</td>\n",
|
239 |
+
" <td>0</td>\n",
|
240 |
+
" </tr>\n",
|
241 |
+
" <tr>\n",
|
242 |
+
" <th>2</th>\n",
|
243 |
+
" <td>spam</td>\n",
|
244 |
+
" <td>Free entry in 2 a wkly comp to win FA Cup fina...</td>\n",
|
245 |
+
" <td>1</td>\n",
|
246 |
+
" </tr>\n",
|
247 |
+
" <tr>\n",
|
248 |
+
" <th>3</th>\n",
|
249 |
+
" <td>ham</td>\n",
|
250 |
+
" <td>U dun say so early hor... U c already then say...</td>\n",
|
251 |
+
" <td>0</td>\n",
|
252 |
+
" </tr>\n",
|
253 |
+
" <tr>\n",
|
254 |
+
" <th>4</th>\n",
|
255 |
+
" <td>ham</td>\n",
|
256 |
+
" <td>Nah I don't think he goes to usf, he lives aro...</td>\n",
|
257 |
+
" <td>0</td>\n",
|
258 |
+
" </tr>\n",
|
259 |
+
" </tbody>\n",
|
260 |
+
"</table>\n",
|
261 |
+
"</div>"
|
262 |
+
],
|
263 |
+
"text/plain": [
|
264 |
+
" Category Message Spam\n",
|
265 |
+
"0 ham Go until jurong point, crazy.. Available only ... 0\n",
|
266 |
+
"1 ham Ok lar... Joking wif u oni... 0\n",
|
267 |
+
"2 spam Free entry in 2 a wkly comp to win FA Cup fina... 1\n",
|
268 |
+
"3 ham U dun say so early hor... U c already then say... 0\n",
|
269 |
+
"4 ham Nah I don't think he goes to usf, he lives aro... 0"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
"execution_count": 7,
|
273 |
+
"metadata": {},
|
274 |
+
"output_type": "execute_result"
|
275 |
+
}
|
276 |
+
],
|
277 |
+
"source": [
|
278 |
+
"# Encoding Categories into 0 and 1 :\n",
|
279 |
+
"dataset[\"Spam\"] = [1 if i==\"spam\" else 0 for i in dataset[\"Category\"]]\n",
|
280 |
+
"dataset.head()"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "code",
|
285 |
+
"execution_count": 8,
|
286 |
+
"metadata": {},
|
287 |
+
"outputs": [],
|
288 |
+
"source": [
|
289 |
+
"X = dataset[\"Message\"]\n",
|
290 |
+
"y = dataset.Spam"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"attachments": {},
|
295 |
+
"cell_type": "markdown",
|
296 |
+
"metadata": {},
|
297 |
+
"source": [
|
298 |
+
"### Train-Test Split :"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "code",
|
303 |
+
"execution_count": 9,
|
304 |
+
"metadata": {},
|
305 |
+
"outputs": [],
|
306 |
+
"source": [
|
307 |
+
"from sklearn.model_selection import train_test_split\n",
|
308 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=12)"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "code",
|
313 |
+
"execution_count": 10,
|
314 |
+
"metadata": {},
|
315 |
+
"outputs": [
|
316 |
+
{
|
317 |
+
"data": {
|
318 |
+
"text/plain": [
|
319 |
+
"((4457,), (1115,), (4457,), (1115,))"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
"execution_count": 10,
|
323 |
+
"metadata": {},
|
324 |
+
"output_type": "execute_result"
|
325 |
+
}
|
326 |
+
],
|
327 |
+
"source": [
|
328 |
+
"X_train.shape, X_test.shape, y_train.shape, y_test.shape"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"cell_type": "code",
|
333 |
+
"execution_count": 11,
|
334 |
+
"metadata": {},
|
335 |
+
"outputs": [],
|
336 |
+
"source": [
|
337 |
+
"# Importing CountVectorizer which converta the text into matrics :\n",
|
338 |
+
"from sklearn.feature_extraction.text import CountVectorizer"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"cell_type": "code",
|
343 |
+
"execution_count": 12,
|
344 |
+
"metadata": {},
|
345 |
+
"outputs": [],
|
346 |
+
"source": [
|
347 |
+
"# Importing Different classifiers to compare :\n",
|
348 |
+
"# from sklearn.linear_model import LogisticRegression\n",
|
349 |
+
"# from sklearn.ensemble import RandomForestClassifier\n",
|
350 |
+
"from sklearn.naive_bayes import MultinomialNB # βοΈβοΈ Works well with this type of problems, when data is discrete."
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "code",
|
355 |
+
"execution_count": 13,
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [],
|
358 |
+
"source": [
|
359 |
+
"# Creating a pipeline :\n",
|
360 |
+
"\n",
|
361 |
+
"from sklearn.pipeline import Pipeline\n",
|
362 |
+
"clf=Pipeline([\n",
|
363 |
+
" ('vectorizer',CountVectorizer()),\n",
|
364 |
+
" ('nb',MultinomialNB())\n",
|
365 |
+
"])"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"cell_type": "code",
|
370 |
+
"execution_count": 14,
|
371 |
+
"metadata": {},
|
372 |
+
"outputs": [
|
373 |
+
{
|
374 |
+
"data": {
|
375 |
+
"text/html": [
|
376 |
+
"<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"βΈ\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"βΎ\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[('vectorizer', CountVectorizer()), ('nb', MultinomialNB())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('vectorizer', CountVectorizer()), ('nb', MultinomialNB())])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">CountVectorizer</label><div class=\"sk-toggleable__content\"><pre>CountVectorizer()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">MultinomialNB</label><div class=\"sk-toggleable__content\"><pre>MultinomialNB()</pre></div></div></div></div></div></div></div>"
|
377 |
+
],
|
378 |
+
"text/plain": [
|
379 |
+
"Pipeline(steps=[('vectorizer', CountVectorizer()), ('nb', MultinomialNB())])"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
"execution_count": 14,
|
383 |
+
"metadata": {},
|
384 |
+
"output_type": "execute_result"
|
385 |
+
}
|
386 |
+
],
|
387 |
+
"source": [
|
388 |
+
"# Fitting Data :\n",
|
389 |
+
"\n",
|
390 |
+
"clf.fit(X_train, y_train)"
|
391 |
+
]
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"cell_type": "code",
|
395 |
+
"execution_count": 15,
|
396 |
+
"metadata": {},
|
397 |
+
"outputs": [
|
398 |
+
{
|
399 |
+
"data": {
|
400 |
+
"text/plain": [
|
401 |
+
"0.97847533632287"
|
402 |
+
]
|
403 |
+
},
|
404 |
+
"execution_count": 15,
|
405 |
+
"metadata": {},
|
406 |
+
"output_type": "execute_result"
|
407 |
+
}
|
408 |
+
],
|
409 |
+
"source": [
|
410 |
+
"# Accuracy check :\n",
|
411 |
+
"clf.score(X_test,y_test)"
|
412 |
+
]
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"attachments": {},
|
416 |
+
"cell_type": "markdown",
|
417 |
+
"metadata": {},
|
418 |
+
"source": [
|
419 |
+
"### *TESTING :*"
|
420 |
+
]
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"cell_type": "code",
|
424 |
+
"execution_count": 19,
|
425 |
+
"metadata": {},
|
426 |
+
"outputs": [
|
427 |
+
{
|
428 |
+
"name": "stdout",
|
429 |
+
"output_type": "stream",
|
430 |
+
"text": [
|
431 |
+
"Spam!\n",
|
432 |
+
"Good to go π\n",
|
433 |
+
"Good to go π\n",
|
434 |
+
"Spam!\n",
|
435 |
+
"Spam!\n",
|
436 |
+
"Good to go π\n"
|
437 |
+
]
|
438 |
+
}
|
439 |
+
],
|
440 |
+
"source": [
|
441 |
+
"msg = [\"Thanks for your subscription to Ringtone - 'Shila ki jawaani', your mobile will be charged RS.5/month Please confirm by replying YES or NO. If you reply NO you will not be charged\",\n",
|
442 |
+
"\"Oops, I'll let you know when my roommate's done\",\n",
|
443 |
+
"\"hello, i am akshat, are you free today?\",\n",
|
444 |
+
"\"free free free, get free coins, just download this xyz app (100 RS. Instant Cash)\",\n",
|
445 |
+
"\"subscribe to get unlimited benefits\",\n",
|
446 |
+
"\" i want some money, can you plz send me? \"]\n",
|
447 |
+
"\n",
|
448 |
+
"# True Values : 1 0 0 1 1 0\n",
|
449 |
+
"# i.e. - Spam, Ham, Ham, Spam, Spam, Ham\n",
|
450 |
+
"\n",
|
451 |
+
"y_pred = clf.predict(msg) \n",
|
452 |
+
"for i in y_pred:\n",
|
453 |
+
" if i==0:\n",
|
454 |
+
" print(\"Good to go π\")\n",
|
455 |
+
" else:\n",
|
456 |
+
" print(\"Spam!\")"
|
457 |
+
]
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"attachments": {},
|
461 |
+
"cell_type": "markdown",
|
462 |
+
"metadata": {},
|
463 |
+
"source": [
|
464 |
+
"#### *Saving this as a model using Joblib :*"
|
465 |
+
]
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"cell_type": "code",
|
469 |
+
"execution_count": 17,
|
470 |
+
"metadata": {},
|
471 |
+
"outputs": [],
|
472 |
+
"source": [
|
473 |
+
"# from joblib import dump\n",
|
474 |
+
"# dump(clf, 'Classifier.joblib')"
|
475 |
+
]
|
476 |
+
}
|
477 |
+
],
|
478 |
+
"metadata": {
|
479 |
+
"kernelspec": {
|
480 |
+
"display_name": "Python 3",
|
481 |
+
"language": "python",
|
482 |
+
"name": "python3"
|
483 |
+
},
|
484 |
+
"language_info": {
|
485 |
+
"codemirror_mode": {
|
486 |
+
"name": "ipython",
|
487 |
+
"version": 3
|
488 |
+
},
|
489 |
+
"file_extension": ".py",
|
490 |
+
"mimetype": "text/x-python",
|
491 |
+
"name": "python",
|
492 |
+
"nbconvert_exporter": "python",
|
493 |
+
"pygments_lexer": "ipython3",
|
494 |
+
"version": "3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)]"
|
495 |
+
},
|
496 |
+
"orig_nbformat": 4,
|
497 |
+
"vscode": {
|
498 |
+
"interpreter": {
|
499 |
+
"hash": "706654849fe4d07e215a38f448ee8e5d780794e2be3793e11d37ab3169b306ae"
|
500 |
+
}
|
501 |
+
}
|
502 |
+
},
|
503 |
+
"nbformat": 4,
|
504 |
+
"nbformat_minor": 2
|
505 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
joblib==1.2.0
|
2 |
+
gradio==3.17.0
|
3 |
+
scikit-learn==1.2.1
|
4 |
+
pandas==1.5.0
|
spam.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|