akshayvkt commited on
Commit
a03ccae
·
1 Parent(s): 3bafdbc

Create app.py

Browse files

Created the main app app.py

Files changed (1) hide show
  1. app.py +69 -0
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import openai, config, subprocess
3
+ import requests
4
+ import json
5
+
6
+ messages = [{"role": "system", "content": 'You are Steve Jobs. Respond to all input in 25 words or less.'}]
7
+
8
+ # Set up the API endpoint URL and headers
9
+ url = f"https://api.elevenlabs.io/v1/text-to-speech/{os.environ.get('voice_id')}/stream"
10
+ headers = {
11
+ "accept": "*/*",
12
+ "xi-api-key": os.environ.get('elevenlabs_api_key'),
13
+ "Content-Type": "application/json",
14
+ }
15
+
16
+ # Define a function to handle the Gradio input and generate the response
17
+ def transcribe(audio):
18
+ global messages
19
+
20
+ # Use OpenAI to transcribe the user's audio input
21
+ # API call 1
22
+ audio_file = open(audio, "rb")
23
+ transcript = openai.Audio.transcribe("whisper-1", audio_file)
24
+
25
+ # Append the user's message to the message history
26
+ messages.append({"role": "user", "content": transcript["text"]})
27
+
28
+ # Generate a response using OpenAI's chat API
29
+ #API call 2
30
+ response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
31
+
32
+ # Extract the system message from the API response and append it to the message history
33
+ system_message = response["choices"][0]["message"]
34
+ messages.append(system_message)
35
+
36
+
37
+ #API Call 3
38
+ # Use the voice synthesis API to generate an audio response from the system message
39
+ data = {
40
+ "text": system_message["content"],
41
+ "voice_settings": {
42
+ "stability": 0,
43
+ "similarity_boost": 0
44
+ }
45
+ }
46
+ response = requests.post(url, headers=headers, data=json.dumps(data), stream=True)
47
+
48
+ # Save the audio response to a file
49
+ if response.ok:
50
+ with open("output.wav", "wb") as f:
51
+ for chunk in response.iter_content(chunk_size=1024):
52
+ f.write(chunk)
53
+ else:
54
+ print(f"Error: {response.status_code} - {response.reason}")
55
+
56
+ IPython.display.display(IPython.display.Audio('output.wav'))
57
+
58
+ # Generate a chat transcript for display in the Gradio UI
59
+ chat_transcript = ""
60
+ for message in messages:
61
+ if message['role'] != 'system':
62
+ chat_transcript += message['role'] + ": " + message['content'] + "\n\n"
63
+
64
+ return chat_transcript,'output.wav'
65
+
66
+ # Define the Gradio UI interface
67
+ # ui = gr.Interface(fn=transcribe, inputs=gr.Audio(source="microphone", type="filepath"), outputs="text")
68
+ ui = gr.Interface(fn=transcribe, inputs=gr.Audio(source="microphone", type="filepath"), outputs=['text','audio'])
69
+ ui.launch(share=True)