Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
pipe = pipeline(
|
6 |
+
"automatic-speech-recognition", model="openai/whisper-base"
|
7 |
+
)
|
8 |
+
|
9 |
+
def transcribe(stream, nuevo_fragmento):
|
10 |
+
sr, y = nuevo_fragmento
|
11 |
+
y = y.astype(np.float32)
|
12 |
+
y /= np.max(np.abs(y))
|
13 |
+
|
14 |
+
if stream is not None:
|
15 |
+
stream = np.concatenate([stream, y])
|
16 |
+
else:
|
17 |
+
stream = y
|
18 |
+
|
19 |
+
return stream, pipe({"sampling_rate": sr, "raw": stream})["text"]
|
20 |
+
|
21 |
+
demo = gr.Interface(
|
22 |
+
transcribe,
|
23 |
+
["state", gr.Audio(sources=["microphone"], streaming=True)],
|
24 |
+
["state", "text"],
|
25 |
+
live=True,
|
26 |
+
)
|
27 |
+
|
28 |
+
demo.launch()
|