|
import argparse |
|
|
|
import numpy as np |
|
|
|
from evalplus.data import get_human_eval_plus, get_mbpp_plus |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--dataset", default="humaneval", choices=["mbpp", "humaneval"]) |
|
parser.add_argument("--mini", action="store_true") |
|
args = parser.parse_args() |
|
|
|
print(f"Reporting stats for {args.dataset} dataset [ mini = {args.mini} ]") |
|
if args.dataset == "humaneval": |
|
data = get_human_eval_plus(mini=args.mini) |
|
elif args.dataset == "mbpp": |
|
data = get_mbpp_plus(mini=args.mini) |
|
|
|
sizes = np.array( |
|
[[len(inp["base_input"]), len(inp["plus_input"])] for inp in data.values()] |
|
) |
|
size_base = sizes[:, 0] |
|
print(f"{size_base.min() = }", f"{size_base.argmin() = }") |
|
print(f"{size_base.max() = }", f"{size_base.argmax() = }") |
|
print(f"{np.percentile(size_base, 50) = :.1f}") |
|
print(f"{size_base.mean() = :.1f}") |
|
|
|
size_plus = sizes[:, 1] |
|
size_plus += size_base |
|
print(f"{size_plus.min() = }", f"{size_plus.argmin() = }") |
|
print(f"{size_plus.max() = }", f"{size_plus.argmax() = }") |
|
print(f"{np.percentile(size_plus, 50) = :.1f}") |
|
print(f"{size_plus.mean() = :.1f}") |
|
|