import argparse import os import torch from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer, AutoModelForCausalLM import logging from evalplus.data import (get_human_eval_plus, write_jsonl, get_human_eval_plus_hash, get_mbpp_plus, get_mbpp_plus_hash, ) from utils import sanitize_solution,check_correctness,get_groundtruth,SUCCESS from evalplus.eval._special_oracle import MBPP_OUTPUT_NOT_NONE_TASKS from copy import deepcopy MAX_TRY = 2 def build_humaneval_instruction(languge: str, question: str): return '''You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions. @@ Instruction Here is the given code to do completion: ```{} {} ``` Please continue to complete the function with {} programming language. You are not allowed to modify the given code and do the completion only. Please return all completed codes in one code block. This code block should be in the following format: ```{} # Your codes here ``` @@ Response '''.strip().format(languge.lower(), question.strip(),languge.lower(),languge.lower()) build_mbpp_instruction='''You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions. @@ Instruction Here is the given problem and test examples: {} Please use the {} programming language to solve this problem. Please make sure that your code includes the functions from the test samples and that the input and output formats of these functions match the test samples. Please return all completed codes in one code block. This code block should be in the following format: ```{} # Your codes here ``` @@ Response ''' def generate_multi_round(problem, expected_output, example, lang, tokenizer, model, name, flags): if flags.dataset=="humaneval": prompt = build_humaneval_instruction(lang, example['prompt']) elif flags.dataset=="mbpp": prompt = build_mbpp_instruction.strip().format(example['prompt'],"python","python") inputs = tokenizer.apply_chat_template( [{'role': 'user', 'content': prompt }], return_tensors="pt" ).to(model.device) stop_id = tokenizer.convert_tokens_to_ids("<|EOT|>") assert isinstance(stop_id, int), "Invalid tokenizer, EOT id not found" max_new_tokens=1024 outputs = model.generate( inputs, max_new_tokens=max_new_tokens, do_sample=False, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, temperature=0, ) output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) solution = {k:v for k,v in example.items()} solution["solution"]=output sanitized_solution = sanitize_solution(deepcopy(solution),flags.eofs) attempt = 1 judge = False modify = False code = sanitized_solution["solution"] while attempt==1 or sanitized_solution["solution"]!="": args = ( flags.dataset, 0, problem, sanitized_solution["solution"], expected_output, flags.version, True, # fast_check example["task_id"]+f'_{attempt}', flags.min_time_limit, flags.gt_time_limit_factor, ) result = check_correctness(*args) if flags.version=="base" and result["base"][0]==SUCCESS: code = sanitized_solution["solution"] if attempt==2: modify = True judge = True break elif flags.version=="plus" and result["plus"][0]==result["base"][0]==SUCCESS: code = sanitized_solution["solution"] if attempt==2: modify = True judge = True break else: attempt += 1 if attempt > MAX_TRY: code = sanitized_solution["solution"] break execution_feedback="" if flags.version=="base": execution_feedback=result["base"][2] elif flags.version=="plus": if result["base"][0]!=SUCCESS: execution_feedback+=result["base"][2] if "The results aren't as expected." in execution_feedback: if result["plus"][0]!=SUCCESS: execution_feedback+="\n"+result["plus"][2] else: execution_feedback=result["plus"][2] prompt +=""" {} @@ Instruction Execution result: {} """.format(solution["solution"],execution_feedback) inputs = tokenizer.apply_chat_template( [{'role': 'user', 'content': prompt }], return_tensors="pt" ).to(model.device) outputs = model.generate( inputs, max_new_tokens=max_new_tokens, do_sample=False, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, temperature=0, ) output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) solution = {k:v for k,v in example.items()} solution["solution"]=output sanitized_solution = sanitize_solution(deepcopy(solution),flags.eofs) return code,judge,modify def gen_solution(args): os.environ["TOKENIZERS_PARALLELISM"] = "false" fail_list=[] model_path = args.model logging.info(f"model:{model_path}") model_name =model_path.replace("/", "_") lang = "python" os.makedirs(os.path.join(args.output_path,model_name),exist_ok=True) output_file = os.path.join(args.output_path,model_name,f"multiround_{args.dataset}_{args.version}_solutions-sanitized.jsonl") if os.path.exists(output_file): logging.info(f"Old sample jsonl file exists, remove it. {output_file}") os.remove(output_file) tokenizer = AutoTokenizer.from_pretrained(model_path) logging.info("load tokenizer {} from {} over.".format(tokenizer.__class__, model_path)) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map="auto", ) model.eval() modelname=model_path.replace("/", "_") if args.dataset=="humaneval": problems = get_human_eval_plus() examples = problems.items() dataset_hash = get_human_eval_plus_hash() expected_outputs = get_groundtruth(problems, dataset_hash, []) else: problems = get_mbpp_plus() examples = problems.items() dataset_hash = get_mbpp_plus_hash() expected_outputs = get_groundtruth( problems, dataset_hash, MBPP_OUTPUT_NOT_NONE_TASKS, ) logging.info("Read {} examples for evaluation over.".format(len(examples))) a,b = 0,0 total_modify = 0 for task_id,example in tqdm(examples, desc='Generating'): problem = problems[task_id] expected_output = expected_outputs[task_id] code,judge,modify = generate_multi_round(problem,expected_output,example, lang, tokenizer, model, modelname,args) gen_sample=[dict(task_id=task_id, solution=code)] write_jsonl(output_file, gen_sample ,append=True) if modify: total_modify += 1 if judge: a += 1 else: b += 1 fail_list.append(task_id) result = a/(a+b) print ("pass num :",a) print ("total num:",a+b) print ('pass rate: '+str(result)) print ("num modify: "+str(total_modify)) print ("judge:",judge) print ('modify: '+str(modify)) print ("fail list:",fail_list) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, help="model path") parser.add_argument('--output_path', type=str, help="output path", default="./multiround_output") parser.add_argument('--log_file', type=str, help="log file name", default="gen_humaneval_plus_solution_singleround.log") parser.add_argument("--min-time-limit", default=1, type=float) parser.add_argument("--gt-time-limit-factor", default=4.0, type=float) parser.add_argument( "--version", required=True, type=str, choices=["base", "plus"] ) parser.add_argument( "--dataset", required=True, type=str, choices=["humaneval", "mbpp"] ) args = parser.parse_args() args.eofs=None model_name = args.model.replace("/", "_") os.makedirs(os.path.join(args.output_path,model_name),exist_ok=True) logfile=os.path.join(args.output_path,model_name,args.log_file) logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - \n%(message)s') file_handler = logging.FileHandler(logfile) file_handler.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(levelname)s - \n%(message)s') file_handler.setFormatter(formatter) logging.getLogger().addHandler(file_handler) gen_solution(args)