from fastapi import FastAPI from transformers import AutoTokenizer, AutoModelForCausalLM import torch import os # Set cache directory for Hugging Face Transformers os.environ["TRANSFORMERS_CACHE"] = "/home/user/.cache" # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("matsant01/STEMerald-2b") model = AutoModelForCausalLM.from_pretrained("matsant01/STEMerald-2b") # Initialize FastAPI app app = FastAPI() @app.get("/") def read_root(): return {"message": "Welcome to the STEMerald-2b API"} #@app.post("/generate/") #def generate_text(prompt: str): # inputs = tokenizer(prompt, return_tensors="pt") # outputs = model.generate(inputs["input_ids"], max_length=50) # generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # return {"generated_text": generated_text}