Spaces:
Sleeping
Sleeping
File size: 7,911 Bytes
4f619cd afa4646 4f619cd d7d871b 4f619cd da805ae d7d871b 63a07b3 d7d871b 1edaca9 e8f4009 bb2f53d 4f619cd a7fefdc 4f619cd 9e26394 4f619cd 8987d55 4f619cd 13fb865 8987d55 4f619cd 29a7f90 4f619cd eeb019e 4f619cd 2026c4d 96151e3 4f619cd 29a7f90 4f619cd 6aa4c27 4f619cd 41450b9 31bffd5 4f619cd b4f833e 4f619cd 3b9d8da 1a45897 3b9d8da 4f619cd 29a7f90 4f619cd afa4646 4f619cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# ------------------------------------------------------------------------------
# Copyright (c) 2023, Alaa lab, UC Berkeley. All rights reserved.
#
# Written by Yulu Gan.
# ------------------------------------------------------------------------------
from __future__ import annotations
import math
import cv2
import random
from fnmatch import fnmatch
import numpy as np
import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionInstructPix2PixPipeline
title = "InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists"
description = """
<p style='text-align: center'> Yulu Gan, Sungwoo Park, Alex Schubert, Anthony Philippakis, Ahmed Alaa <br>
<a href='https://arxiv.org/abs/2310.00390'>arXiv</a> | <a href='https://github.com/AlaaLab/InstructCV' target='_blank'>Code</a></p>
We develop a <b>unified language interface</b> for computer vision tasks that abstracts away task-specific design choices and enables task execution by following natural language instructions. \n\n
<b>Tips for using this demo</b>: Please upload a new image and provide an instruction outlining the specific vision task you wish InstructCV to perform (e.g., “Segment the dog”, “Detect the dog”, “Estimate the depth map of this image”, etc.). \n
<div style="display: flex; justify-content: center; align-items: center;">
<img src="https://i.postimg.cc/hjtwgCDr/Fig1-Instruct-CV-1.png" alt="Application of InstructCV to new test images & user-written instructions" width="600">
</div>
""" # noqa
example_instructions = [
"Please help me detect Buzz.",
"Please help me detect Woody's face.",
"Create a monocular depth map.",
]
model_id = "alaa-lab/InstructCV"
def main():
# pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None).to("cpu")
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None).to("cuda")
example_image = Image.open("imgs/example2.jpg").convert("RGB")
def load_example(
seed: int,
randomize_seed: bool,
text_cfg_scale: float,
image_cfg_scale: float,
):
example_instruction = random.choice(example_instructions)
return [example_image, example_instruction] + generate(
example_image,
example_instruction,
seed,
0,
text_cfg_scale,
image_cfg_scale,
)
def generate(
input_image: Image.Image,
instruction: str,
seed: int,
randomize_seed:bool,
text_cfg_scale: float,
image_cfg_scale: float,
):
seed = random.randint(0, 100000) if randomize_seed else seed
text_cfg_scale = text_cfg_scale
image_cfg_scale = image_cfg_scale
width, height = input_image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
if instruction == "":
return [input_image]
generator = torch.manual_seed(seed)
edited_image = pipe(
instruction, image=input_image,
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
num_inference_steps=25, generator=generator,
).images[0]
instruction_ = instruction.lower()
if fnmatch(instruction_, "*segment*") or fnmatch(instruction_, "*split*") or fnmatch(instruction_, "*divide*"):
input_image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) #numpy.ndarray
edited_image = cv2.cvtColor(np.array(edited_image), cv2.COLOR_RGB2GRAY)
ret, thresh = cv2.threshold(edited_image, 127, 255, cv2.THRESH_BINARY)
img2 = input_image.copy()
seed_seg = np.random.randint(0,10000)
np.random.seed(seed_seg)
colors = np.random.randint(0,255,(3))
colors2 = np.random.randint(0,255,(3))
contours,_ = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_NONE)
edited_image = cv2.drawContours(input_image,contours,-1,(int(colors[0]),int(colors[1]),int(colors[2])),3)
for j in range(len(contours)):
edited_image_2 = cv2.fillPoly(img2, [contours[j]], (int(colors2[0]),int(colors2[1]),int(colors2[2])))
img_merge = cv2.addWeighted(edited_image, 0.5,edited_image_2, 0.5, 0)
edited_image = Image.fromarray(cv2.cvtColor(img_merge, cv2.COLOR_BGR2RGB))
if fnmatch(instruction_, "*depth*"):
edited_image = cv2.cvtColor(np.array(edited_image), cv2.COLOR_RGB2GRAY)
n_min = np.min(edited_image)
n_max = np.max(edited_image)
edited_image = (edited_image-n_min)/(n_max-n_min+1e-8)
edited_image = (255*edited_image).astype(np.uint8)
edited_image = cv2.applyColorMap(edited_image, cv2.COLORMAP_JET)
edited_image = Image.fromarray(cv2.cvtColor(edited_image, cv2.COLOR_BGR2RGB))
# text_cfg_scale = 7.5
# image_cfg_scale = 1.5
return [seed, text_cfg_scale, image_cfg_scale, edited_image]
with gr.Blocks() as demo:
# gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">
# InstructCV: Towards Universal Text-to-Image Vision Generalists
# </h1>""")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1.5, min_width=100):
generate_button = gr.Button("Generate result")
with gr.Column(scale=1.5, min_width=100):
load_button = gr.Button("Load example")
with gr.Column(scale=3):
instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)
with gr.Row():
input_image = gr.Image(label="Input Image", type="pil", interactive=True)
edited_image = gr.Image(label=f"Output Image", type="pil", interactive=False)
input_image.style(height=512, width=512)
edited_image.style(height=512, width=512)
with gr.Row():
randomize_seed = gr.Radio(
["Fix Seed", "Randomize Seed"],
value="Randomize Seed",
type="index",
show_label=False,
interactive=True,
)
seed = gr.Number(value=90, precision=0, label="Seed", interactive=True)
text_cfg_scale = gr.Number(value=7.5, label=f"Text weight", interactive=True)
image_cfg_scale = gr.Number(value=1.5, label=f"Image weight", interactive=True)
# gr.Markdown(Intro_text)
load_button.click(
fn=load_example,
inputs=[
seed,
randomize_seed,
text_cfg_scale,
image_cfg_scale,
],
outputs=[input_image, instruction, seed, text_cfg_scale, image_cfg_scale, edited_image],
)
generate_button.click(
fn=generate,
inputs=[
input_image,
instruction,
seed,
randomize_seed,
text_cfg_scale,
image_cfg_scale,
],
outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image],
)
demo.queue(concurrency_count=1)
demo.launch(share=False)
if __name__ == "__main__":
main()
|