File size: 7,911 Bytes
4f619cd
 
 
 
 
 
 
 
 
 
 
 
 
 
afa4646
4f619cd
 
 
 
d7d871b
4f619cd
 
da805ae
d7d871b
63a07b3
d7d871b
1edaca9
e8f4009
bb2f53d
4f619cd
 
 
 
 
 
 
 
 
a7fefdc
4f619cd
 
 
9e26394
4f619cd
 
 
8987d55
 
 
 
 
 
4f619cd
 
 
 
 
13fb865
8987d55
 
4f619cd
 
 
 
 
 
 
29a7f90
 
4f619cd
 
eeb019e
 
4f619cd
 
 
 
 
 
 
 
 
 
 
 
 
2026c4d
96151e3
4f619cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29a7f90
 
4f619cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa4c27
 
4f619cd
 
 
 
 
 
 
 
 
 
41450b9
31bffd5
 
4f619cd
 
b4f833e
4f619cd
 
 
3b9d8da
1a45897
 
3b9d8da
 
 
4f619cd
 
 
 
 
 
 
 
 
29a7f90
 
4f619cd
 
 
 
 
 
 
afa4646
4f619cd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# ------------------------------------------------------------------------------
# Copyright (c) 2023, Alaa lab, UC Berkeley. All rights reserved.
#
# Written by Yulu Gan.
# ------------------------------------------------------------------------------

from __future__ import annotations

import math
import cv2
import random
from fnmatch import fnmatch
import numpy as np

import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionInstructPix2PixPipeline

title = "InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists"

description = """
<p style='text-align: center'> Yulu Gan, Sungwoo Park, Alex Schubert, Anthony Philippakis, Ahmed Alaa <br>
<a href='https://arxiv.org/abs/2310.00390'>arXiv</a> | <a href='https://github.com/AlaaLab/InstructCV' target='_blank'>Code</a></p>
We develop a <b>unified language interface</b> for computer vision tasks that abstracts away task-specific design choices and enables task execution by following natural language instructions. \n\n
<b>Tips for using this demo</b>: Please upload a new image and provide an instruction outlining the specific vision task you wish InstructCV to perform (e.g., “Segment the dog”, “Detect the dog”, “Estimate the depth map of this image”, etc.). \n
<div style="display: flex; justify-content: center; align-items: center;">
  <img src="https://i.postimg.cc/hjtwgCDr/Fig1-Instruct-CV-1.png" alt="Application of InstructCV to new test images & user-written instructions" width="600">
</div>
"""  # noqa


example_instructions = [
                        "Please help me detect Buzz.",
                        "Please help me detect Woody's face.",
                        "Create a monocular depth map.",
]

model_id = "alaa-lab/InstructCV"

def main():
    # pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None).to("cpu")
    pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None).to("cuda")
    example_image = Image.open("imgs/example2.jpg").convert("RGB")
    

    def load_example(
        seed: int, 
        randomize_seed: bool,
        text_cfg_scale: float,
        image_cfg_scale: float,
    ):
        example_instruction = random.choice(example_instructions)
        return [example_image, example_instruction] + generate(
            example_image,
            example_instruction,
            seed,
            0,
            text_cfg_scale,
            image_cfg_scale,
        )

    def generate(
        input_image: Image.Image,
        instruction: str,
        seed: int,
        randomize_seed:bool,
        text_cfg_scale: float,
        image_cfg_scale: float,
    ):
        seed = random.randint(0, 100000) if randomize_seed else seed
        text_cfg_scale = text_cfg_scale
        image_cfg_scale = image_cfg_scale
        width, height = input_image.size
        factor = 512 / max(width, height)
        factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
        width = int((width * factor) // 64) * 64
        height = int((height * factor) // 64) * 64
        input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
        
        if instruction == "":
            return [input_image]

        generator = torch.manual_seed(seed)
        edited_image = pipe(
            instruction, image=input_image,
            guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
            num_inference_steps=25, generator=generator,
        ).images[0]
        instruction_ = instruction.lower()
        
        if fnmatch(instruction_, "*segment*") or fnmatch(instruction_, "*split*") or fnmatch(instruction_, "*divide*"):
            input_image  = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) #numpy.ndarray
            edited_image = cv2.cvtColor(np.array(edited_image), cv2.COLOR_RGB2GRAY)
            ret, thresh  = cv2.threshold(edited_image, 127, 255, cv2.THRESH_BINARY)
            img2         = input_image.copy()
            seed_seg     = np.random.randint(0,10000)
            np.random.seed(seed_seg)
            colors       = np.random.randint(0,255,(3))
            colors2      = np.random.randint(0,255,(3))
            contours,_   = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_NONE)
            edited_image = cv2.drawContours(input_image,contours,-1,(int(colors[0]),int(colors[1]),int(colors[2])),3)
            for j in range(len(contours)):
                edited_image_2 = cv2.fillPoly(img2, [contours[j]], (int(colors2[0]),int(colors2[1]),int(colors2[2])))
            img_merge = cv2.addWeighted(edited_image, 0.5,edited_image_2, 0.5, 0)
            edited_image  = Image.fromarray(cv2.cvtColor(img_merge, cv2.COLOR_BGR2RGB))
        
        if fnmatch(instruction_, "*depth*"):
            edited_image = cv2.cvtColor(np.array(edited_image), cv2.COLOR_RGB2GRAY)
            n_min    = np.min(edited_image)
            n_max    = np.max(edited_image)
    
            edited_image = (edited_image-n_min)/(n_max-n_min+1e-8)
            edited_image = (255*edited_image).astype(np.uint8)
            edited_image = cv2.applyColorMap(edited_image, cv2.COLORMAP_JET)
            edited_image = Image.fromarray(cv2.cvtColor(edited_image, cv2.COLOR_BGR2RGB))

        # text_cfg_scale   = 7.5
        # image_cfg_scale  = 1.5
        return [seed, text_cfg_scale, image_cfg_scale, edited_image]


    with gr.Blocks() as demo:
#         gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">
#    InstructCV: Towards Universal Text-to-Image Vision Generalists
# </h1>""")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
        gr.Markdown(description)
        with gr.Row():
            with gr.Column(scale=1.5, min_width=100):
                generate_button = gr.Button("Generate result")
            with gr.Column(scale=1.5, min_width=100):
                load_button = gr.Button("Load example")
            with gr.Column(scale=3):
                instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)

        with gr.Row():
            input_image = gr.Image(label="Input Image", type="pil", interactive=True)
            edited_image = gr.Image(label=f"Output Image", type="pil", interactive=False)
            input_image.style(height=512, width=512)
            edited_image.style(height=512, width=512)
        
        with gr.Row(): 
            randomize_seed = gr.Radio(
                ["Fix Seed", "Randomize Seed"],
                value="Randomize Seed",
                type="index",
                show_label=False,
                interactive=True,
            )
            
            seed = gr.Number(value=90, precision=0, label="Seed", interactive=True)
            text_cfg_scale = gr.Number(value=7.5, label=f"Text weight", interactive=True)
            image_cfg_scale = gr.Number(value=1.5, label=f"Image weight", interactive=True)


        # gr.Markdown(Intro_text)
        
        load_button.click(
            fn=load_example,
            inputs=[
                seed,
                randomize_seed,
                text_cfg_scale,
                image_cfg_scale,
            ],
            outputs=[input_image, instruction, seed, text_cfg_scale, image_cfg_scale, edited_image],
        )
        generate_button.click(
            fn=generate,
            inputs=[
                input_image,
                instruction,
                seed,
                randomize_seed,
                text_cfg_scale,
                image_cfg_scale,
            ],
            outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image],
        )

    demo.queue(concurrency_count=1)
    demo.launch(share=False)


if __name__ == "__main__":
    main()