Spaces:
Sleeping
Sleeping
# ------------------------------------------------------------------------------ | |
# Copyright (c) 2023, Alaa lab, UC Berkeley. All rights reserved. | |
# | |
# Written by Yulu Gan. | |
# ------------------------------------------------------------------------------ | |
from __future__ import annotations | |
import math | |
import cv2 | |
import random | |
from fnmatch import fnmatch | |
import numpy as np | |
import gradio as gr | |
import torch | |
from PIL import Image, ImageOps | |
from diffusers import StableDiffusionInstructPix2PixPipeline | |
title = "InstructCV" | |
description = """ | |
<p style='text-align: center'> <a href='https://huggingface.co/spaces/yulu2/InstructCV/' target='_blank'>Project Page</a> | <a href='https://arxiv.org' target='_blank'>Paper</a> | <a href='https://github.com' target='_blank'>Code</a></p> | |
Gradio demo for InstructCV: Instruction-Tuned Text-to-Image Diffusion Models As Vision Generalists. \n | |
You may upload any images you like and try to let the model do vision tasks following your intent. \n | |
Some examples: You could use "Segment the dog" for segmentation, "Detect the dog" for object detection, "Estimate the depth map of this image" for depth estimation, etc. | |
""" # noqa | |
example_instructions = [ | |
"Please help me detect Buzz.", | |
"Please help me detect Woody's face.", | |
"Create a monocular depth map.", | |
] | |
model_id = "alaa-lab/InstructCV" | |
def main(): | |
# pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None).to("cpu") | |
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, safety_checker=None).to("cuda") | |
example_image = Image.open("imgs/example2.jpg").convert("RGB") | |
def load_example(seed: int, randomize_seed:bool): | |
example_instruction = random.choice(example_instructions) | |
return [example_image, example_instruction] + generate( | |
example_image, | |
example_instruction, | |
seed, | |
0, | |
) | |
def generate( | |
input_image: Image.Image, | |
instruction: str, | |
seed: int, | |
randomize_seed:bool, | |
): | |
seed = random.randint(0, 100000) if randomize_seed else seed | |
width, height = input_image.size | |
factor = 512 / max(width, height) | |
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height) | |
width = int((width * factor) // 64) * 64 | |
height = int((height * factor) // 64) * 64 | |
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS) | |
if instruction == "": | |
return [input_image] | |
generator = torch.manual_seed(seed) | |
edited_image = pipe( | |
instruction, image=input_image, | |
guidance_scale=7.5, image_guidance_scale=1.5, | |
num_inference_steps=50, generator=generator, | |
).images[0] | |
instruction_ = instruction.lower() | |
if fnmatch(instruction_, "*segment*") or fnmatch(instruction_, "*split*") or fnmatch(instruction_, "*divide*"): | |
input_image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) #numpy.ndarray | |
edited_image = cv2.cvtColor(np.array(edited_image), cv2.COLOR_RGB2GRAY) | |
ret, thresh = cv2.threshold(edited_image, 127, 255, cv2.THRESH_BINARY) | |
img2 = input_image.copy() | |
seed_seg = np.random.randint(0,10000) | |
np.random.seed(seed_seg) | |
colors = np.random.randint(0,255,(3)) | |
colors2 = np.random.randint(0,255,(3)) | |
contours,_ = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_NONE) | |
edited_image = cv2.drawContours(input_image,contours,-1,(int(colors[0]),int(colors[1]),int(colors[2])),3) | |
for j in range(len(contours)): | |
edited_image_2 = cv2.fillPoly(img2, [contours[j]], (int(colors2[0]),int(colors2[1]),int(colors2[2]))) | |
img_merge = cv2.addWeighted(edited_image, 0.5,edited_image_2, 0.5, 0) | |
edited_image = Image.fromarray(cv2.cvtColor(img_merge, cv2.COLOR_BGR2RGB)) | |
if fnmatch(instruction_, "*depth*"): | |
edited_image = cv2.cvtColor(np.array(edited_image), cv2.COLOR_RGB2GRAY) | |
n_min = np.min(edited_image) | |
n_max = np.max(edited_image) | |
edited_image = (edited_image-n_min)/(n_max-n_min+1e-8) | |
edited_image = (255*edited_image).astype(np.uint8) | |
edited_image = cv2.applyColorMap(edited_image, cv2.COLORMAP_JET) | |
edited_image = Image.fromarray(cv2.cvtColor(edited_image, cv2.COLOR_BGR2RGB)) | |
text_cfg_scale = 7.5 | |
image_cfg_scale = 1.5 | |
return [seed, text_cfg_scale, image_cfg_scale, edited_image] | |
with gr.Blocks() as demo: | |
# gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
# InstructCV: Towards Universal Text-to-Image Vision Generalists | |
# </h1>""") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>") | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=1.5, min_width=100): | |
generate_button = gr.Button("Generate result") | |
with gr.Column(scale=1.5, min_width=100): | |
load_button = gr.Button("Load example") | |
with gr.Column(scale=3): | |
instruction = gr.Textbox(lines=1, label="Instruction", interactive=True) | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type="pil", interactive=True) | |
edited_image = gr.Image(label=f"Output Image", type="pil", interactive=False) | |
input_image.style(height=512, width=512) | |
edited_image.style(height=512, width=512) | |
with gr.Row(): | |
randomize_seed = gr.Radio( | |
["Fix Seed", "Randomize Seed"], | |
value="Randomize Seed", | |
type="index", | |
show_label=False, | |
interactive=True, | |
) | |
seed = gr.Number(value=90, precision=0, label="Seed", interactive=True) | |
text_cfg_scale = gr.Number(value=7.5, label=f"Text weight", interactive=False) | |
image_cfg_scale = gr.Number(value=1.5, label=f"Image weight", interactive=False) | |
# gr.Markdown(Intro_text) | |
load_button.click( | |
fn=load_example, | |
inputs=[seed, randomize_seed], | |
outputs=[input_image, instruction, seed, text_cfg_scale, image_cfg_scale, edited_image], | |
) | |
generate_button.click( | |
fn=generate, | |
inputs=[ | |
input_image, | |
instruction, | |
seed, | |
randomize_seed, | |
], | |
outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image], | |
) | |
demo.queue(concurrency_count=1) | |
demo.launch(share=False) | |
if __name__ == "__main__": | |
main() | |