Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
6430b7c
1
Parent(s):
0c6a355
- app.py +86 -4
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,7 +1,89 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
import numpy as np
|
6 |
|
7 |
+
# Device and dtype configuration
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
10 |
|
11 |
+
# Load model and processor with LM
|
12 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained("alakxender/wav2vec2-large-mms-1b-dv-syn-md")
|
13 |
+
model = Wav2Vec2ForCTC.from_pretrained(
|
14 |
+
"alakxender/wav2vec2-large-mms-1b-dv-syn-md",
|
15 |
+
torch_dtype=torch_dtype
|
16 |
+
).to(device)
|
17 |
+
|
18 |
+
MAX_LENGTH = 120 # 2 minutes
|
19 |
+
MIN_LENGTH = 1 # 1 second
|
20 |
+
|
21 |
+
def transcribe(audio_file):
|
22 |
+
try:
|
23 |
+
# Load audio file
|
24 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
25 |
+
|
26 |
+
# Move waveform to the correct device
|
27 |
+
waveform = waveform.to(device)
|
28 |
+
|
29 |
+
# Get the duration of the audio
|
30 |
+
duration = waveform.shape[1] / sample_rate
|
31 |
+
|
32 |
+
# Check if the audio is too short or too long
|
33 |
+
if duration < MIN_LENGTH or duration > MAX_LENGTH:
|
34 |
+
return f"Audio duration is too short or too long. Duration: {duration} seconds"
|
35 |
+
|
36 |
+
# Resample if necessary
|
37 |
+
if sample_rate != 16000:
|
38 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000).to(device)
|
39 |
+
waveform = resampler(waveform)
|
40 |
+
|
41 |
+
# Convert to mono if stereo
|
42 |
+
if waveform.shape[0] > 1:
|
43 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
44 |
+
|
45 |
+
# Move to CPU for numpy conversion
|
46 |
+
waveform = waveform.cpu()
|
47 |
+
audio_input = waveform.squeeze().numpy()
|
48 |
+
|
49 |
+
# Ensure audio input is float32
|
50 |
+
if audio_input.dtype != np.float32:
|
51 |
+
audio_input = audio_input.astype(np.float32)
|
52 |
+
|
53 |
+
# Process audio input
|
54 |
+
input_values = processor(
|
55 |
+
audio_input,
|
56 |
+
sampling_rate=16_000,
|
57 |
+
return_tensors="pt"
|
58 |
+
).input_values.to(device)
|
59 |
+
|
60 |
+
# Convert to float16 if using CUDA
|
61 |
+
if torch_dtype == torch.float16:
|
62 |
+
input_values = input_values.half()
|
63 |
+
|
64 |
+
# Generate transcription
|
65 |
+
with torch.no_grad():
|
66 |
+
logits = model(input_values).logits
|
67 |
+
|
68 |
+
# Use language model for decoding
|
69 |
+
transcription = processor.decode(logits[0].cpu().numpy())
|
70 |
+
|
71 |
+
# Return the transcription in lowercase
|
72 |
+
print(transcription)
|
73 |
+
return transcription[0].lower()
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
return f"Error during transcription: {str(e)}"
|
77 |
+
|
78 |
+
# Create Gradio interface
|
79 |
+
iface = gr.Interface(
|
80 |
+
fn=transcribe,
|
81 |
+
inputs=gr.Audio(type="filepath"),
|
82 |
+
outputs="text",
|
83 |
+
title="Dhivehi Speech Recognition with Language Model",
|
84 |
+
description="Upload an audio file to transcribe Dhivehi speech to text using language model enhanced decoding."
|
85 |
+
)
|
86 |
+
|
87 |
+
# Launch the interface
|
88 |
+
if __name__ == "__main__":
|
89 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torchaudio
|
3 |
+
pyctcdecode
|