Spaces:
Runtime error
Runtime error
import os | |
import random | |
import uuid | |
from typing import Union | |
import argilla as rg | |
import gradio as gr | |
import nltk | |
import pandas as pd | |
from datasets import Dataset | |
from distilabel.distiset import Distiset | |
from gradio.oauth import OAuthToken | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from huggingface_hub import HfApi | |
from synthetic_dataset_generator.apps.base import ( | |
combine_datasets, | |
hide_success_message, | |
load_dataset_from_hub, | |
preprocess_input_data, | |
push_pipeline_code_to_hub, | |
show_success_message, | |
test_max_num_rows, | |
validate_argilla_user_workspace_dataset, | |
validate_push_to_hub, | |
) | |
from synthetic_dataset_generator.constants import ( | |
DEFAULT_BATCH_SIZE, | |
MODEL, | |
MODEL_COMPLETION, | |
SAVE_LOCAL_DIR, | |
) | |
from synthetic_dataset_generator.pipelines.base import get_rewritten_prompts | |
from synthetic_dataset_generator.pipelines.embeddings import ( | |
get_embeddings, | |
get_sentence_embedding_dimensions, | |
) | |
from synthetic_dataset_generator.pipelines.rag import ( | |
DEFAULT_DATASET_DESCRIPTIONS, | |
generate_pipeline_code, | |
get_chunks_generator, | |
get_prompt_generator, | |
get_response_generator, | |
get_sentence_pair_generator, | |
) | |
from synthetic_dataset_generator.utils import ( | |
column_to_list, | |
get_argilla_client, | |
get_org_dropdown, | |
get_random_repo_name, | |
swap_visibility, | |
) | |
os.makedirs("./nltk_data", exist_ok=True) | |
nltk.data.path.append("./nltk_data") | |
nltk.download("punkt_tab", download_dir="./nltk_data") | |
nltk.download("averaged_perceptron_tagger_eng", download_dir="./nltk_data") | |
def generate_system_prompt(dataset_description: str, progress=gr.Progress()): | |
progress(0.1, desc="Initializing") | |
generate_description = get_prompt_generator() | |
progress(0.5, desc="Generating") | |
result = next( | |
generate_description.process( | |
[ | |
{ | |
"instruction": dataset_description, | |
} | |
] | |
) | |
)[0]["generation"] | |
progress(1.0, desc="Prompt generated") | |
return result | |
def load_dataset_file( | |
repo_id: str, | |
file_paths: list[str], | |
input_type: str, | |
num_rows: int = 10, | |
token: Union[OAuthToken, None] = None, | |
progress=gr.Progress(), | |
): | |
progress(0.1, desc="Loading the source data") | |
if input_type == "dataset-input": | |
return load_dataset_from_hub(repo_id=repo_id, num_rows=num_rows, token=token) | |
else: | |
return preprocess_input_data(file_paths=file_paths, num_rows=num_rows) | |
def generate_sample_dataset( | |
repo_id: str, | |
file_paths: list[str], | |
input_type: str, | |
system_prompt: str, | |
document_column: str, | |
retrieval_reranking: list[str], | |
num_rows: str, | |
oauth_token: Union[OAuthToken, None], | |
progress=gr.Progress(), | |
): | |
retrieval = "Retrieval" in retrieval_reranking | |
reranking = "Reranking" in retrieval_reranking | |
if input_type == "prompt-input": | |
dataframe = pd.DataFrame(columns=["context", "question", "response"]) | |
else: | |
dataframe, _ = load_dataset_file( | |
repo_id=repo_id, | |
file_paths=file_paths, | |
input_type=input_type, | |
num_rows=num_rows, | |
token=oauth_token, | |
) | |
progress(0.5, desc="Generating dataset") | |
dataframe = generate_dataset( | |
input_type=input_type, | |
dataframe=dataframe, | |
system_prompt=system_prompt, | |
document_column=document_column, | |
retrieval=retrieval, | |
reranking=reranking, | |
num_rows=10, | |
is_sample=True, | |
) | |
progress(1.0, desc="Sample dataset generated") | |
return dataframe | |
def generate_dataset( | |
input_type: str, | |
dataframe: pd.DataFrame, | |
system_prompt: str, | |
document_column: str, | |
retrieval: bool = False, | |
reranking: bool = False, | |
num_rows: int = 10, | |
temperature: float = 0.7, | |
temperature_completion: Union[float, None] = None, | |
is_sample: bool = False, | |
progress=gr.Progress(), | |
): | |
num_rows = test_max_num_rows(num_rows) | |
progress(0.0, desc="Initializing dataset generation") | |
if input_type == "prompt-input": | |
chunk_generator = get_chunks_generator( | |
temperature=temperature, is_sample=is_sample | |
) | |
else: | |
document_data = column_to_list(dataframe, document_column) | |
if len(document_data) < num_rows: | |
document_data += random.choices( | |
document_data, k=num_rows - len(document_data) | |
) | |
retrieval_generator = get_sentence_pair_generator( | |
action="query", | |
triplet=True if retrieval else False, | |
temperature=temperature, | |
is_sample=is_sample, | |
) | |
response_generator = get_response_generator( | |
temperature=temperature_completion or temperature, is_sample=is_sample | |
) | |
if reranking: | |
reranking_generator = get_sentence_pair_generator( | |
action="semantically-similar", | |
triplet=True, | |
temperature=temperature, | |
is_sample=is_sample, | |
) | |
steps = 2 + sum([1 if reranking else 0, 1 if input_type == "prompt-type" else 0]) | |
total_steps: int = num_rows * steps | |
step_progress = round(1 / steps, 2) | |
batch_size = DEFAULT_BATCH_SIZE | |
# generate chunks | |
if input_type == "prompt-input": | |
n_processed = 0 | |
chunk_results = [] | |
rewritten_system_prompts = get_rewritten_prompts(system_prompt, num_rows) | |
while n_processed < num_rows: | |
progress( | |
step_progress * n_processed / num_rows, | |
total=total_steps, | |
desc="Generating chunks", | |
) | |
remaining_rows = num_rows - n_processed | |
batch_size = min(batch_size, remaining_rows) | |
inputs = [ | |
{"task": random.choice(rewritten_system_prompts)} | |
for _ in range(batch_size) | |
] | |
chunks = list(chunk_generator.process(inputs=inputs)) | |
chunk_results.extend(chunks[0]) | |
n_processed += batch_size | |
random.seed(a=random.randint(0, 2**32 - 1)) | |
document_data = [chunk["generation"] for chunk in chunk_results] | |
progress(step_progress, desc="Generating chunks") | |
# generate questions | |
n_processed = 0 | |
retrieval_results = [] | |
while n_processed < num_rows: | |
progress( | |
step_progress * n_processed / num_rows, | |
total=total_steps, | |
desc="Generating questions", | |
) | |
remaining_rows = num_rows - n_processed | |
batch_size = min(batch_size, remaining_rows) | |
inputs = [ | |
{"anchor": document} | |
for document in document_data[n_processed : n_processed + batch_size] | |
] | |
questions = list(retrieval_generator.process(inputs=inputs)) | |
retrieval_results.extend(questions[0]) | |
n_processed += batch_size | |
for result in retrieval_results: | |
result["context"] = result["anchor"] | |
if retrieval: | |
result["question"] = result["positive"] | |
result["positive_retrieval"] = result.pop("positive") | |
result["negative_retrieval"] = result.pop("negative") | |
else: | |
result["question"] = result.pop("positive") | |
progress(step_progress, desc="Generating questions") | |
# generate responses | |
n_processed = 0 | |
response_results = [] | |
while n_processed < num_rows: | |
progress( | |
step_progress + step_progress * n_processed / num_rows, | |
total=total_steps, | |
desc="Generating responses", | |
) | |
batch = retrieval_results[n_processed : n_processed + batch_size] | |
responses = list(response_generator.process(inputs=batch)) | |
response_results.extend(responses[0]) | |
n_processed += batch_size | |
for result in response_results: | |
result["response"] = result["generation"] | |
progress(step_progress, desc="Generating responses") | |
# generate reranking | |
if reranking: | |
n_processed = 0 | |
reranking_results = [] | |
while n_processed < num_rows: | |
progress( | |
step_progress * n_processed / num_rows, | |
total=total_steps, | |
desc="Generating reranking data", | |
) | |
batch = response_results[n_processed : n_processed + batch_size] | |
batch = list(reranking_generator.process(inputs=batch)) | |
reranking_results.extend(batch[0]) | |
n_processed += batch_size | |
for result in reranking_results: | |
result["positive_reranking"] = result.pop("positive") | |
result["negative_reranking"] = result.pop("negative") | |
progress( | |
1, | |
total=total_steps, | |
desc="Creating dataset", | |
) | |
# create distiset | |
distiset_results = [] | |
source_results = reranking_results if reranking else response_results | |
base_keys = ["context", "question", "response"] | |
retrieval_keys = ["positive_retrieval", "negative_retrieval"] if retrieval else [] | |
reranking_keys = ["positive_reranking", "negative_reranking"] if reranking else [] | |
relevant_keys = base_keys + retrieval_keys + reranking_keys | |
for result in source_results: | |
record = {key: result.get(key) for key in relevant_keys if key in result} | |
distiset_results.append(record) | |
dataframe = pd.DataFrame(distiset_results) | |
progress(1.0, desc="Dataset generation completed") | |
return dataframe | |
def push_dataset_to_hub( | |
dataframe: pd.DataFrame, | |
org_name: str, | |
repo_name: str, | |
oauth_token: Union[gr.OAuthToken, None], | |
private: bool, | |
pipeline_code: str, | |
progress=gr.Progress(), | |
): | |
progress(0.0, desc="Validating") | |
repo_id = validate_push_to_hub(org_name, repo_name) | |
progress(0.5, desc="Creating dataset") | |
dataset = Dataset.from_pandas(dataframe) | |
dataset = combine_datasets(repo_id, dataset, oauth_token) | |
distiset = Distiset({"default": dataset}) | |
progress(0.9, desc="Pushing dataset") | |
distiset.push_to_hub( | |
repo_id=repo_id, | |
private=private, | |
include_script=False, | |
token=oauth_token.token, | |
create_pr=False, | |
) | |
push_pipeline_code_to_hub(pipeline_code, org_name, repo_name, oauth_token) | |
progress(1.0, desc="Dataset pushed") | |
return dataframe | |
def push_dataset( | |
org_name: str, | |
repo_name: str, | |
private: bool, | |
original_repo_id: str, | |
file_paths: list[str], | |
input_type: str, | |
system_prompt: str, | |
document_column: str, | |
retrieval_reranking: list[str], | |
num_rows: int, | |
temperature: float, | |
temperature_completion: float, | |
pipeline_code: str, | |
oauth_token: Union[gr.OAuthToken, None] = None, | |
progress=gr.Progress(), | |
) -> pd.DataFrame: | |
retrieval = "Retrieval" in retrieval_reranking | |
reranking = "Reranking" in retrieval_reranking | |
if input_type == "prompt-input": | |
dataframe = pd.DataFrame(columns=["context", "question", "response"]) | |
else: | |
dataframe, _ = load_dataset_file( | |
repo_id=original_repo_id, | |
file_paths=file_paths, | |
input_type=input_type, | |
num_rows=num_rows, | |
token=oauth_token, | |
) | |
progress(0.5, desc="Generating dataset") | |
dataframe = generate_dataset( | |
input_type=input_type, | |
dataframe=dataframe, | |
system_prompt=system_prompt, | |
document_column=document_column, | |
retrieval=retrieval, | |
reranking=reranking, | |
num_rows=num_rows, | |
temperature=temperature, | |
temperature_completion=temperature_completion, | |
is_sample=True, | |
) | |
push_dataset_to_hub( | |
dataframe, org_name, repo_name, oauth_token, private, pipeline_code | |
) | |
dataframe = dataframe[ | |
dataframe.applymap(lambda x: str(x).strip() if pd.notna(x) else x).apply( | |
lambda row: row.notna().all() and (row != "").all(), axis=1 | |
) | |
] | |
try: | |
progress(0.1, desc="Setting up user and workspace") | |
hf_user = HfApi().whoami(token=oauth_token.token)["name"] | |
client = get_argilla_client() | |
if client is None: | |
return "" | |
progress(0.5, desc="Creating dataset in Argilla") | |
fields = [ | |
rg.TextField( | |
name="context", | |
title="Context", | |
description="Context for the generation", | |
), | |
rg.ChatField( | |
name="chat", | |
title="Chat", | |
description="User and assistant conversation based on the context", | |
), | |
] | |
for item in ["positive", "negative"]: | |
if retrieval: | |
fields.append( | |
rg.TextField( | |
name=f"{item}_retrieval", | |
title=f"{item.capitalize()} retrieval", | |
description=f"The {item} query for retrieval", | |
) | |
) | |
if reranking: | |
fields.append( | |
rg.TextField( | |
name=f"{item}_reranking", | |
title=f"{item.capitalize()} reranking", | |
description=f"The {item} query for reranking", | |
) | |
) | |
questions = [ | |
rg.LabelQuestion( | |
name="relevant", | |
title="Are the question and response relevant to the given context?", | |
labels=["yes", "no"], | |
), | |
rg.LabelQuestion( | |
name="is_response_correct", | |
title="Is the response correct?", | |
labels=["yes", "no"], | |
), | |
] | |
for item in ["positive", "negative"]: | |
if retrieval: | |
questions.append( | |
rg.LabelQuestion( | |
name=f"is_{item}_retrieval_relevant", | |
title=f"Is the {item} retrieval relevant?", | |
labels=["yes", "no"], | |
required=False, | |
) | |
) | |
if reranking: | |
questions.append( | |
rg.LabelQuestion( | |
name=f"is_{item}_reranking_relevant", | |
title=f"Is the {item} reranking relevant?", | |
labels=["yes", "no"], | |
required=False, | |
) | |
) | |
metadata = [ | |
rg.IntegerMetadataProperty( | |
name=f"{item}_length", title=f"{item.capitalize()} length" | |
) | |
for item in ["context", "question", "response"] | |
] | |
vectors = [ | |
rg.VectorField( | |
name=f"{item}_embeddings", | |
dimensions=get_sentence_embedding_dimensions(), | |
) | |
for item in ["context", "question", "response"] | |
] | |
settings = rg.Settings( | |
fields=fields, | |
questions=questions, | |
metadata=metadata, | |
vectors=vectors, | |
guidelines="Please review the conversation and provide an evaluation.", | |
) | |
dataframe["chat"] = dataframe.apply( | |
lambda row: [ | |
{"role": "user", "content": row["question"]}, | |
{"role": "assistant", "content": row["response"]}, | |
], | |
axis=1, | |
) | |
for item in ["context", "question", "response"]: | |
dataframe[f"{item}_length"] = dataframe[item].apply( | |
lambda x: len(x) if x is not None else 0 | |
) | |
dataframe[f"{item}_embeddings"] = get_embeddings( | |
dataframe[item].apply(lambda x: x if x is not None else "").to_list() | |
) | |
rg_dataset = client.datasets(name=repo_name, workspace=hf_user) | |
if rg_dataset is None: | |
rg_dataset = rg.Dataset( | |
name=repo_name, | |
workspace=hf_user, | |
settings=settings, | |
client=client, | |
) | |
rg_dataset = rg_dataset.create() | |
progress(0.7, desc="Pushing dataset to Argilla") | |
hf_dataset = Dataset.from_pandas(dataframe) | |
rg_dataset.records.log(records=hf_dataset) | |
progress(1.0, desc="Dataset pushed to Argilla") | |
except Exception as e: | |
raise gr.Error(f"Error pushing dataset to Argilla: {e}") | |
return "" | |
def save_local( | |
repo_id: str, | |
file_paths: list[str], | |
input_type: str, | |
system_prompt: str, | |
document_column: str, | |
retrieval_reranking: list[str], | |
num_rows: int, | |
temperature: float, | |
repo_name: str, | |
temperature_completion: float, | |
) -> pd.DataFrame: | |
retrieval = "Retrieval" in retrieval_reranking | |
reranking = "Reranking" in retrieval_reranking | |
if input_type == "prompt-input": | |
dataframe = pd.DataFrame(columns=["context", "question", "response"]) | |
else: | |
dataframe, _ = load_dataset_file( | |
repo_id=repo_id, | |
file_paths=file_paths, | |
input_type=input_type, | |
num_rows=num_rows, | |
) | |
dataframe = generate_dataset( | |
input_type=input_type, | |
dataframe=dataframe, | |
system_prompt=system_prompt, | |
document_column=document_column, | |
retrieval=retrieval, | |
reranking=reranking, | |
num_rows=num_rows, | |
temperature=temperature, | |
temperature_completion=temperature_completion, | |
) | |
local_dataset = Dataset.from_pandas(dataframe) | |
output_csv = os.path.join(SAVE_LOCAL_DIR, repo_name + ".csv") | |
output_json = os.path.join(SAVE_LOCAL_DIR, repo_name + ".json") | |
local_dataset.to_csv(output_csv, index=False) | |
local_dataset.to_json(output_json, index=False) | |
return output_csv, output_json | |
def show_system_prompt_visibility(): | |
return {system_prompt: gr.Textbox(visible=True)} | |
def hide_system_prompt_visibility(): | |
return {system_prompt: gr.Textbox(visible=False)} | |
def show_document_column_visibility(): | |
return {document_column: gr.Dropdown(visible=True)} | |
def hide_document_column_visibility(): | |
return { | |
document_column: gr.Dropdown( | |
choices=["Load your data first in step 1."], | |
value="Load your data first in step 1.", | |
visible=False, | |
) | |
} | |
def show_pipeline_code_visibility(): | |
return {pipeline_code_ui: gr.Accordion(visible=True)} | |
def hide_pipeline_code_visibility(): | |
return {pipeline_code_ui: gr.Accordion(visible=False)} | |
def show_temperature_completion(): | |
if MODEL != MODEL_COMPLETION: | |
return {temperature_completion: gr.Slider(value=0.9, visible=True)} | |
def show_save_local_button(): | |
return {btn_save_local: gr.Button(visible=True)} | |
def hide_save_local_button(): | |
return {btn_save_local: gr.Button(visible=False)} | |
def show_save_local(): | |
gr.update(success_message, min_height=0) | |
return { | |
csv_file: gr.File(visible=True), | |
json_file: gr.File(visible=True), | |
success_message: success_message, | |
} | |
def hide_save_local(): | |
gr.update(success_message, min_height=100) | |
return { | |
csv_file: gr.File(visible=False), | |
json_file: gr.File(visible=False), | |
success_message: success_message, | |
} | |
###################### | |
# Gradio UI | |
###################### | |
with gr.Blocks() as app: | |
with gr.Column() as main_ui: | |
gr.Markdown("## 1. Select your input") | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=2): | |
input_type = gr.Dropdown( | |
label="Input type", | |
choices=["dataset-input", "file-input", "prompt-input"], | |
value="dataset-input", | |
multiselect=False, | |
visible=False, | |
) | |
with gr.Tab("Load from Hub") as tab_dataset_input: | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=2): | |
search_in = HuggingfaceHubSearch( | |
label="Search", | |
placeholder="Search for a dataset", | |
search_type="dataset", | |
sumbit_on_select=True, | |
) | |
with gr.Row(): | |
clear_dataset_btn_part = gr.Button( | |
"Clear", variant="secondary" | |
) | |
load_dataset_btn = gr.Button("Load", variant="primary") | |
with gr.Column(scale=3): | |
examples = gr.Examples( | |
examples=[ | |
"charris/wikipedia_sample", | |
"plaguss/argilla_sdk_docs_raw_unstructured", | |
"BeIR/hotpotqa-generated-queries", | |
], | |
label="Example datasets", | |
fn=lambda x: x, | |
inputs=[search_in], | |
run_on_click=True, | |
) | |
search_out = gr.HTML(label="Dataset preview", visible=False) | |
with gr.Tab("Load your file") as tab_file_input: | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=2): | |
file_in = gr.File( | |
label="Upload your file. Supported formats: .md, .txt, .docx, .pdf", | |
file_count="multiple", | |
file_types=[".md", ".txt", ".docx", ".pdf"], | |
) | |
with gr.Row(): | |
clear_file_btn_part = gr.Button( | |
"Clear", variant="secondary" | |
) | |
load_file_btn = gr.Button("Load", variant="primary") | |
with gr.Column(scale=3): | |
file_out = gr.HTML(label="Dataset preview", visible=False) | |
with gr.Tab("Generate from prompt") as tab_prompt_input: | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=2): | |
dataset_description = gr.Textbox( | |
label="Dataset description", | |
placeholder="Give a precise description of your desired dataset.", | |
) | |
with gr.Row(): | |
clear_prompt_btn_part = gr.Button( | |
"Clear", variant="secondary" | |
) | |
load_prompt_btn = gr.Button("Create", variant="primary") | |
with gr.Column(scale=3): | |
examples = gr.Examples( | |
examples=DEFAULT_DATASET_DESCRIPTIONS, | |
inputs=[dataset_description], | |
cache_examples=False, | |
label="Examples", | |
) | |
gr.HTML(value="<hr>") | |
gr.Markdown(value="## 2. Configure your task") | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=2): | |
system_prompt = gr.Textbox( | |
label="System prompt", | |
placeholder="You are a helpful assistant.", | |
visible=False, | |
) | |
document_column = gr.Dropdown( | |
label="Document Column", | |
info="Select the document column to generate the RAG dataset", | |
choices=["Load your data first in step 1."], | |
value="Load your data first in step 1.", | |
interactive=False, | |
multiselect=False, | |
allow_custom_value=False, | |
) | |
retrieval_reranking = gr.CheckboxGroup( | |
choices=[("Retrieval", "Retrieval"), ("Reranking", "Reranking")], | |
type="value", | |
label="Data for RAG", | |
info="Indicate the additional data you want to generate for RAG.", | |
) | |
with gr.Row(): | |
clear_btn_full = gr.Button("Clear", variant="secondary") | |
btn_apply_to_sample_dataset = gr.Button("Save", variant="primary") | |
with gr.Column(scale=3): | |
dataframe = gr.Dataframe( | |
headers=["context", "question", "response"], | |
wrap=True, | |
interactive=False, | |
) | |
gr.HTML(value="<hr>") | |
gr.Markdown(value="## 3. Generate your dataset") | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=2): | |
org_name = get_org_dropdown() | |
repo_name = gr.Textbox( | |
label="Repo name", | |
placeholder="dataset_name", | |
value=f"my-distiset-{str(uuid.uuid4())[:8]}", | |
interactive=True, | |
) | |
num_rows = gr.Number( | |
label="Number of rows", | |
value=10, | |
interactive=True, | |
scale=1, | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=1.5, | |
value=0.7, | |
step=0.1, | |
interactive=True, | |
) | |
temperature_completion = gr.Slider( | |
label="Temperature for completion", | |
minimum=0.1, | |
maximum=1.5, | |
value=None, | |
step=0.1, | |
interactive=True, | |
visible=False, | |
) | |
private = gr.Checkbox( | |
label="Private dataset", | |
value=False, | |
interactive=True, | |
scale=1, | |
) | |
btn_push_to_hub = gr.Button("Push to Hub", variant="primary", scale=2) | |
btn_save_local = gr.Button( | |
"Save locally", variant="primary", scale=2, visible=False | |
) | |
with gr.Column(scale=3): | |
csv_file = gr.File( | |
label="CSV", | |
elem_classes="datasets", | |
visible=False, | |
) | |
json_file = gr.File( | |
label="JSON", | |
elem_classes="datasets", | |
visible=False, | |
) | |
success_message = gr.Markdown( | |
visible=False, | |
min_height=0, # don't remove this otherwise progress is not visible | |
) | |
with gr.Accordion( | |
"Customize your pipeline with distilabel", | |
open=False, | |
visible=False, | |
) as pipeline_code_ui: | |
code = generate_pipeline_code( | |
repo_id=search_in.value, | |
input_type=input_type.value, | |
system_prompt=system_prompt.value, | |
document_column=document_column.value, | |
retrieval_reranking=retrieval_reranking.value, | |
num_rows=num_rows.value, | |
) | |
pipeline_code = gr.Code( | |
value=code, | |
language="python", | |
label="Distilabel Pipeline Code", | |
) | |
tab_dataset_input.select( | |
fn=lambda: "dataset-input", | |
inputs=[], | |
outputs=[input_type], | |
).then(fn=hide_system_prompt_visibility, inputs=[], outputs=[system_prompt]).then( | |
fn=show_document_column_visibility, inputs=[], outputs=[document_column] | |
) | |
tab_file_input.select( | |
fn=lambda: "file-input", | |
inputs=[], | |
outputs=[input_type], | |
).then(fn=hide_system_prompt_visibility, inputs=[], outputs=[system_prompt]).then( | |
fn=show_document_column_visibility, inputs=[], outputs=[document_column] | |
) | |
tab_prompt_input.select( | |
fn=lambda: "prompt-input", | |
inputs=[], | |
outputs=[input_type], | |
).then(fn=show_system_prompt_visibility, inputs=[], outputs=[system_prompt]).then( | |
fn=hide_document_column_visibility, inputs=[], outputs=[document_column] | |
) | |
search_in.submit( | |
fn=lambda df: pd.DataFrame(columns=df.columns), | |
inputs=[dataframe], | |
outputs=[dataframe], | |
) | |
gr.on( | |
triggers=[load_dataset_btn.click, load_file_btn.click], | |
fn=load_dataset_file, | |
inputs=[search_in, file_in, input_type], | |
outputs=[dataframe, document_column], | |
) | |
load_prompt_btn.click( | |
fn=generate_system_prompt, | |
inputs=[dataset_description], | |
outputs=[system_prompt], | |
).success( | |
fn=generate_sample_dataset, | |
inputs=[ | |
search_in, | |
file_in, | |
input_type, | |
system_prompt, | |
document_column, | |
retrieval_reranking, | |
num_rows, | |
], | |
outputs=dataframe, | |
) | |
btn_apply_to_sample_dataset.click( | |
fn=generate_sample_dataset, | |
inputs=[ | |
search_in, | |
file_in, | |
input_type, | |
system_prompt, | |
document_column, | |
retrieval_reranking, | |
num_rows, | |
], | |
outputs=dataframe, | |
) | |
btn_push_to_hub.click( | |
fn=validate_argilla_user_workspace_dataset, | |
inputs=[repo_name], | |
outputs=[success_message], | |
).then( | |
fn=validate_push_to_hub, | |
inputs=[org_name, repo_name], | |
outputs=[success_message], | |
).success( | |
fn=hide_save_local, | |
outputs=[csv_file, json_file, success_message], | |
).success( | |
fn=hide_success_message, | |
outputs=[success_message], | |
).success( | |
fn=hide_pipeline_code_visibility, | |
inputs=[], | |
outputs=[pipeline_code_ui], | |
).success( | |
fn=push_dataset, | |
inputs=[ | |
org_name, | |
repo_name, | |
private, | |
search_in, | |
file_in, | |
input_type, | |
system_prompt, | |
document_column, | |
retrieval_reranking, | |
num_rows, | |
temperature, | |
temperature_completion, | |
pipeline_code, | |
], | |
outputs=[success_message], | |
).success( | |
fn=show_success_message, | |
inputs=[org_name, repo_name], | |
outputs=[success_message], | |
).success( | |
fn=generate_pipeline_code, | |
inputs=[ | |
search_in, | |
input_type, | |
system_prompt, | |
document_column, | |
retrieval_reranking, | |
num_rows, | |
], | |
outputs=[pipeline_code], | |
).success( | |
fn=show_pipeline_code_visibility, | |
inputs=[], | |
outputs=[pipeline_code_ui], | |
) | |
btn_save_local.click( | |
fn=hide_success_message, | |
outputs=[success_message], | |
).success( | |
fn=hide_pipeline_code_visibility, | |
inputs=[], | |
outputs=[pipeline_code_ui], | |
).success( | |
fn=show_save_local, | |
inputs=[], | |
outputs=[csv_file, json_file, success_message], | |
).success( | |
save_local, | |
inputs=[ | |
search_in, | |
file_in, | |
input_type, | |
system_prompt, | |
document_column, | |
retrieval_reranking, | |
num_rows, | |
temperature, | |
repo_name, | |
temperature_completion, | |
], | |
outputs=[csv_file, json_file], | |
).success( | |
fn=generate_pipeline_code, | |
inputs=[ | |
search_in, | |
input_type, | |
system_prompt, | |
document_column, | |
retrieval_reranking, | |
num_rows, | |
], | |
outputs=[pipeline_code], | |
).success( | |
fn=show_pipeline_code_visibility, | |
inputs=[], | |
outputs=[pipeline_code_ui], | |
) | |
clear_dataset_btn_part.click(fn=lambda: "", inputs=[], outputs=[search_in]) | |
clear_file_btn_part.click(fn=lambda: None, inputs=[], outputs=[file_in]) | |
clear_prompt_btn_part.click(fn=lambda: "", inputs=[], outputs=[dataset_description]) | |
clear_btn_full.click( | |
fn=lambda df: ("", [], pd.DataFrame(columns=df.columns)), | |
inputs=[dataframe], | |
outputs=[document_column, retrieval_reranking, dataframe], | |
) | |
app.load(fn=swap_visibility, outputs=main_ui) | |
app.load(fn=get_org_dropdown, outputs=[org_name]) | |
app.load(fn=get_random_repo_name, outputs=[repo_name]) | |
app.load(fn=show_temperature_completion, outputs=[temperature_completion]) | |
if SAVE_LOCAL_DIR is not None: | |
app.load(fn=show_save_local_button, outputs=btn_save_local) | |