import time import pandas as pd import polars as pl import torch from datasets import Dataset from sentence_transformers import SentenceTransformer def sts(modelname, data1, data2, score): st = time.time() device = "cuda" if torch.cuda.is_available() else "cpu" model = SentenceTransformer( modelname, device=device, trust_remote_code=True, ) sentences1 = Dataset.from_pandas(pd.read_csv(data1, on_bad_lines='skip', header=0, sep="\t")) sentences2 = Dataset.from_pandas(pd.read_csv(data2, on_bad_lines='skip', header=0, sep="\t")) embeddings1 = model.encode(sentences1["text"], normalize_embeddings=True, batch_size=1024, show_progress_bar=True) embeddings2 = model.encode(sentences2["text"], normalize_embeddings=True, batch_size=1024, show_progress_bar=True) similarity_matrix = model.similarity(embeddings1, embeddings2) df_pd = pd.DataFrame(similarity_matrix) dfi = df_pd.__dataframe__() df = pl.from_dataframe(dfi) df_matrix_with_index = df.with_row_index(name="row_index").with_columns(pl.col("row_index").cast(pl.UInt64)) df_long = df_matrix_with_index.unpivot(index="row_index", variable_name="column_index", value_name="score").with_columns(pl.col("column_index").cast(pl.UInt64)) df_sentences1 = pl.DataFrame(sentences1.to_pandas()).with_row_index(name="row_index").with_columns( pl.col("row_index").cast(pl.UInt64)) df_sentences2 = pl.DataFrame(sentences2.to_pandas()).with_row_index(name="column_index").with_columns( pl.col("column_index").cast(pl.UInt64)) df_long = (df_long .with_columns([pl.col("score").round(4).cast(pl.Float32)]) # Ensure column_index is UInt32 .join(df_sentences1, on="row_index") .join(df_sentences2, on="column_index")) df_long = df_long.rename({ "text": "sentences1", "text_right": "sentences2", }).drop(["row_index", "column_index"]) elapsed_time = time.time() - st print('Execution time:', time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) return df_long.filter(pl.col("score") > score).sort(["score"], descending=True)