Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import BlipForConditionalGeneration, BlipProcessor
|
3 |
+
import torch
|
4 |
+
import tempfile
|
5 |
+
from gtts import gTTS
|
6 |
+
|
7 |
+
# Load models
|
8 |
+
device = "cpu"
|
9 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
10 |
+
model_image_captioning = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device)
|
11 |
+
|
12 |
+
def generate_caption_tts(image):
|
13 |
+
|
14 |
+
inputs = processor(images=image, return_tensors="pt")
|
15 |
+
inputs["max_length"] = 20
|
16 |
+
inputs["num_beams"] = 5
|
17 |
+
outputs = model_image_captioning.generate(**inputs)
|
18 |
+
|
19 |
+
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
20 |
+
|
21 |
+
speech = gTTS(caption, lang="en")
|
22 |
+
tmp_file = tempfile.mkstemp()[1]
|
23 |
+
speech.save(tmp_file)
|
24 |
+
|
25 |
+
return (caption, tmp_file)
|
26 |
+
|
27 |
+
|
28 |
+
title ="<span style='font-style: italic; font-weight: bold; color: darkred;'>智悠科技大语言模型</span> - 智能漂浮舱多模态健康交互机器人"
|
29 |
+
|
30 |
+
description = "BLPM模型:引导性语言图像预训练以实现统一视觉语言理解和生成。 请上传您的图像(或自动感知您的状况)"
|
31 |
+
|
32 |
+
iface = gr.Interface(
|
33 |
+
fn=generate_caption_tts,
|
34 |
+
title=title,
|
35 |
+
description=description,
|
36 |
+
inputs=gr.inputs.Image(shape=(224,224)),
|
37 |
+
outputs=["text", "audio"]
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
#iface.launch(share=True, debug=True)
|
42 |
+
iface.launch()
|