File size: 4,896 Bytes
f655f69
 
 
 
 
 
 
1e32511
f655f69
1e32511
f655f69
1e32511
 
f655f69
 
 
 
1e32511
 
 
 
 
 
 
 
 
 
f655f69
 
 
1e32511
 
c2fa877
 
f655f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2fa877
 
1a79fb2
 
 
 
f655f69
 
1a79fb2
 
f655f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import datetime
import json
import re
import shutil
import typing as t
import wave
from collections.abc import Sized
from enum import StrEnum
from pathlib import Path

import pandas as pd
from httpx import Timeout
from langchain_openai import ChatOpenAI
from pydub import AudioSegment
from tenacity import retry, stop_after_attempt, wait_random_exponential

from src.config import logger, VOICES_CSV_FP


class GPTModels(StrEnum):
    GPT_4o = "gpt-4o"
    GPT_4o_MINI = "gpt-4o-mini"
    GPT_4_TURBO_2024_04_09 = "gpt-4-turbo-2024-04-09"


def get_chat_llm(llm_model: GPTModels, temperature=0.0):
    llm = ChatOpenAI(
        model=llm_model,
        temperature=temperature,
        timeout=Timeout(60, connect=4),
    )
    return llm


def get_collection_safe_index(ix: int, collection: Sized):
    res = min(ix, len(collection) - 1)
    res = max(0, res)
    return res


def write_txt(txt: str, fp: str):
    with open(fp, 'w', encoding='utf-8') as fout:
        fout.write(txt)


def write_json(data, fp: str, indent=2):
    with open(fp, 'w', encoding='utf-8') as fout:
        json.dump(data, fout, indent=indent, ensure_ascii=False)


def rm_dir_conditional(dp: str, to_remove=True):
    if not to_remove:
        return
    logger.info(f'removing dir: "{dp}"')
    try:
        shutil.rmtree(dp)
    except Exception:
        logger.exception(f'failed to remove dir')


def get_utc_now_str():
    now = datetime.datetime.now(tz=datetime.UTC)
    now_str = now.strftime('%Y%m%d-%H%M%S')
    return now_str


async def consume_aiter(aiterator):
    return [x async for x in aiterator]


def auto_retry(f):
    decorator = retry(
        wait=wait_random_exponential(min=3, max=10),
        stop=stop_after_attempt(20),
    )
    return decorator(f)


def write_bytes(data: bytes, fp: str):
    logger.info(f'saving to: "{fp}"')
    with open(fp, "wb") as fout:
        fout.write(data)


def write_chunked_bytes(data: t.Iterable[bytes], fp: str):
    logger.info(f'saving to: "{fp}"')
    with open(fp, "wb") as fout:
        for chunk in data:
            if chunk:
                fout.write(chunk)


def write_raw_pcm_to_file(data: bytes, fp: str, n_channels: int, bytes_depth: int, sampling_rate):
    logger.info(f'saving to: "{fp}"')
    with wave.open(fp, "wb") as f:
        f.setnchannels(n_channels)
        f.setsampwidth(bytes_depth)
        f.setframerate(sampling_rate)
        f.writeframes(data)


def get_audio_duration(filepath: str) -> float:
    """
    Returns the duration of the audio file in seconds.

    :param filepath: Path to the audio file.
    :return: Duration of the audio file in seconds.
    """
    audio = AudioSegment.from_file(filepath)
    # Convert milliseconds to seconds
    duration_in_seconds = len(audio) / 1000
    return round(duration_in_seconds, 1)


def normalize_audio(audio_segment: AudioSegment, target_dBFS: float = -20.0) -> AudioSegment:
    """Normalize an audio segment to the target dBFS level."""
    delta = target_dBFS - audio_segment.dBFS
    res = audio_segment.apply_gain(delta)
    return res


def overlay_multiple_audio(
    main_audio_fp: str,
    audios_to_overlay_fps: list[str],
    starts_sec: list[float],  # list of start positions, in seconds
    out_fp: str,
):
    main_audio = AudioSegment.from_file(main_audio_fp)
    for fp, cur_start_sec in zip(audios_to_overlay_fps, starts_sec):
        audio_to_overlay = AudioSegment.from_file(fp)
        # NOTE: quote from the documentation:
        # "The result is always the same length as this AudioSegment"
        # reference: https://github.com/jiaaro/pydub/blob/master/API.markdown#audiosegmentoverlay
        # NOTE: `position` params is offset time in milliseconds
        start_ms = int(cur_start_sec * 1000)
        main_audio = main_audio.overlay(audio_to_overlay, position=start_ms)

    logger.info(f'saving overlayed audio to: "{out_fp}"')
    main_audio.export(out_fp, format='wav')


def get_audio_from_voice_id(voice_id: str) -> str:
    voices_df = pd.read_csv(VOICES_CSV_FP)
    data = voices_df[voices_df["voice_id"] == voice_id]["preview_url"].values[0]
    return data


def get_character_color(character: str) -> str:
    if not character or character == "Unassigned":
        return "#808080"
    colors = [
        "#FF6B6B",  # pale red
        "#ed1262",  # magenta-red
        "#ed2bac",  # magenta
        "#892ed5",  # purple
        "#4562f7",  # blue
        "#11ab99",  # cyan
        "#58f23a",  # green
        # "#96CEB4",  # light green
        # "#D4A5A5",  # light red
    ]
    hash_val = sum(ord(c) for c in character)
    return colors[hash_val % len(colors)]


def prettify_unknown_character_label(text):
    return re.sub(r'\bc(\d+)\b', r'Character\1', text)


def hex_to_rgb(hex_color):
    hex_color = hex_color.lstrip('#')
    return f"{int(hex_color[0:2], 16)},{int(hex_color[2:4], 16)},{int(hex_color[4:6], 16)}"