File size: 21,476 Bytes
6982727 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 95eddc1 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 6982727 a8ed8aa 6982727 95eddc1 6982727 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
import tensorflow as tf
from tensorflow import keras
import seaborn as sns
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score
from sklearn.metrics import f1_score, confusion_matrix, precision_recall_curve, roc_curve
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from tensorflow.keras import layers, losses
from tensorflow.keras.datasets import fashion_mnist
from tensorflow.keras.models import Model
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from sklearn.decomposition import PCA
import plotly.express as px
from scipy.interpolate import griddata
import sklearn
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix, precision_score, roc_auc_score, precision_recall_curve
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, cross_val_predict, StratifiedKFold
from sentence_transformers import SentenceTransformer
from sklearn import tree
import gradio as gr
import os
import json
from datetime import datetime, timedelta
import shutil
import random
import plotly.io as pio
import joblib
#load models
autoencoder = keras.models.load_model('models/autoencoder')
classifier = keras.models.load_model('models/classifier')
decision_tree = joblib.load("models/decision_tree_model.pkl")
llm_model = SentenceTransformer(r"sentence-transformers/paraphrase-MiniLM-L6-v2")
pca_2d_llm_clusters = joblib.load('models/pca_llm_model.pkl')
print("models loaded")
#compute training dataset constant (min and max) for data normalization
dataframe = pd.read_csv('ecg.csv', header=None)
dataframe[140] = dataframe[140].apply(lambda x: 1 if x==0 else 0)
df_ecg = dataframe[[i for i in range(140)]]
ecg_raw_data = df_ecg.values
labels = dataframe.values[:, -1]
ecg_data = ecg_raw_data[:, :]
train_data, test_data, train_labels, test_labels = train_test_split(
ecg_data, labels, test_size=0.2, random_state=21)
min_val = tf.reduce_min(train_data)
max_val = tf.reduce_max(train_data)
print("constant computing: OK")
#compute PCA for latent space representation
ecg_data = (ecg_data - min_val) / (max_val - min_val)
ecg_data = tf.cast(ecg_data, tf.float32)
print(ecg_data.shape)
X = autoencoder.encoder(ecg_data).numpy()
n_components=2
pca = PCA(n_components=n_components)
X_compressed = pca.fit_transform(X)
column_names = [f"Feature{i + 1}" for i in range(n_components)]
categories = ["normal","heart disease"]
target_categorical = pd.Categorical.from_codes(labels.astype(int), categories=categories)
df_compressed = pd.DataFrame(X_compressed, columns=column_names)
df_compressed["target"] = target_categorical
print("PCA: done")
#load dataset for decision tree map plot
df_plot = pd.read_csv("df_mappa.csv", sep=",", header=0)
print("df map for decision tree loaded.")
#load dataset form llm pca
df_pca_llm = pd.read_csv("df_PCA_llm.csv",sep=",",header=0)
#useful functions
def df_encoding(df):
df.ExerciseAngina.replace(
{
'N' : 'No',
'Y' : 'exercise-induced angina'
},
inplace = True
)
df.FastingBS.replace(
{
0 : 'Not Diabetic',
1 : 'High fasting blood sugar'
},
inplace = True
)
df.Sex.replace(
{
'M' : 'Man',
'F' : 'Female'
},
inplace = True
)
df.ChestPainType.replace(
{
'ATA' : 'Atypical',
'NAP' : 'Non-Anginal Pain',
'ASY' : 'Asymptomatic',
'TA' : 'Typical Angina'
},
inplace = True
)
df.RestingECG.replace(
{
'Normal' : 'Normal',
'ST' : 'ST-T wave abnormality',
'LVH' : 'Probable left ventricular hypertrophy'
},
inplace = True
)
df.ST_Slope.replace(
{
'Up' : 'Up',
'Flat' : 'Flat',
'Down' : 'Downsloping'
},
inplace = True
)
return df
def compile_text_no_target(x):
text = f"""Age: {x['Age']},
Sex: {x['Sex']},
Chest Pain Type: {x['ChestPainType']},
RestingBP: {x['RestingBP']},
Cholesterol: {x['Cholesterol']},
FastingBS: {x['FastingBS']},
RestingECG: {x['RestingECG']},
MaxHR: {x['MaxHR']}
Exercise Angina: {x['ExerciseAngina']},
Old peak: {x['Oldpeak']},
ST_Slope: {x['ST_Slope']}
"""
return text
def LLM_transform(df , model = llm_model):
sentences = df.apply(lambda x: compile_text_no_target(x), axis=1).tolist()
#model = SentenceTransformer(r"sentence-transformers/paraphrase-MiniLM-L6-v2")
output = model.encode(sentences=sentences, show_progress_bar= True, normalize_embeddings = True)
df_embedding = pd.DataFrame(output)
return df_embedding
def upload_ecg(file):
if len(os.listdir("current_ecg"))>0: # se ci sono file nella cartella, eliminali
try:
for filename in os.listdir("current_ecg"):
file_path = os.path.join("current_ecg", filename)
if os.path.isfile(file_path):
os.remove(file_path)
print(f"I file nella cartella 'current_ecg' sono stati eliminati.")
except Exception as e:
print(f"Errore nell'eliminazione dei file: {str(e)}")
df = pd.read_csv(file.name,header=None) #file.name è il path temporaneo del file caricato
source_directory = os.path.dirname(file.name) # Replace with the source directory path
destination_directory = 'current_ecg' # Replace with the destination directory path
# Specify the filename (including the extension) of the CSV file you want to copy
file_to_copy = os.path.basename(file.name) # Replace with the actual filename
# Construct the full source and destination file paths
source_file_path = f"{source_directory}/{file_to_copy}"
destination_file_path = f"{destination_directory}/{file_to_copy}"
# Copy the file from the source directory to the destination directory
shutil.copy(source_file_path, destination_file_path)
return "Your ECG is ready, you can analyze it!"
def ecg_availability(patient_name):
folder_path = os.path.join("PATIENT",patient_name)
status_file_path = os.path.join(folder_path, "status.json")
# Check if the "status.json" file exists
if not os.path.isfile(status_file_path):
return None # If the file doesn't exist, return None
# Load the JSON data from the "status.json" file
with open(status_file_path, 'r') as status_file:
status_data = json.load(status_file)
# Extract the last datetime from the status JSON (if available)
last_datetime_str = status_data.get("last_datetime", None)
# Get the list of CSV files in the folder
csv_files = [f for f in os.listdir(folder_path) if f.endswith(".csv")]
if last_datetime_str is None:
return f"New ECG available" # If the JSON is empty, return all CSV files
last_datetime = datetime.strptime(last_datetime_str, "%B_%d_%H_%M_%S")
# Find successive CSV files
successive_csv_files = []
for csv_file in csv_files:
csv_datetime_str = csv_file.split('.')[0]
csv_datetime = datetime.strptime(csv_datetime_str, "%B_%d_%H_%M_%S")
# Check if the CSV datetime is successive to the last saved datetime
if csv_datetime > last_datetime:
successive_csv_files.append(csv_file)
if len(successive_csv_file)>0:
return f"New ECG available (last ECG: {last_datetime})"
else:
return f"No ECG available (last ECG: {last_datetime})"
def ecg_analysis():
df = pd.read_csv(os.path.join("current_ecg",os.listdir("current_ecg")[0]))
df_ecg = df[[str(i) for i in range(140)]] #ecg data columns
df_data = df_ecg.values #raw data. shape: (n_rows , 140)
df_data = (df_data - min_val) / (max_val - min_val)
df_data = tf.cast(df_data, tf.float32) #raw data. shape: (n_rows , 140)
df_tree = df[["ChestPainType","ST_Slope"]].copy() #dataset for decision tree
df_llm = df[["Age","Sex","ChestPainType","RestingBP","Cholesterol","FastingBS","RestingECG","MaxHR","ExerciseAngina","Oldpeak","ST_Slope"]].copy() # dataset for LLM
true_label = df.values[:,-1]
# ----------------ECG ANALYSIS WITH AUTOENCODER-------------------------------
heartbeat_encoder_preds = autoencoder.encoder(df_data).numpy() #encoder data representation. shape: (n_rows , 8)
heartbeat_decoder_preds = autoencoder.decoder(heartbeat_encoder_preds).numpy() #decoder data reconstruction. shape: (n_rows , 140)
classification_res = classifier.predict(df_data) #shape: (n_rows , 1)
print("shapes of: encoder preds, decoder preds, classification preds/n",heartbeat_encoder_preds.shape,heartbeat_decoder_preds.shape,classification_res.shape)
#heartbeat_indexes = [i for i, pred in enumerate(classification_res) if pred == 0]
p_encoder_preds = heartbeat_encoder_preds[0,:] #encoder representation of the chosen row
p_decoder_preds = heartbeat_decoder_preds[0,:] #decoder reconstruction of the chosen row
p_class_res = classification_res[0,:] # classification res of the chosen row
p_true = true_label[0]
#LATENT SPACE PLOT
# Create the scatter plot
fig = px.scatter(df_compressed, x='Feature1', y='Feature2', color='target', color_discrete_map={0: 'red', 1: 'blue'},
labels={'Target': 'Binary Target'},size_max=18)
# Disable hover information
# fig.update_traces(mode="markers",
# hovertemplate = None,
# hoverinfo = "skip")
# Customize the plot layout
fig.update_layout(
#title='Latent space 2D (PCA reduction)',
xaxis_title='component 1',
yaxis_title='component 2'
)
# add new point
new_point_compressed = pca.transform(p_encoder_preds.reshape(1,-1))
new_point = {'X':[new_point_compressed[0][0]] , 'Y':[new_point_compressed[0][1]] } # Target value 2 for the new point
new_point_df = pd.DataFrame(new_point)
#fig.add_trace(px.scatter(new_point_df, x='X', y='Y').data[0])
fig.add_trace(go.Scatter(
x=new_point_df['X'],
y=new_point_df['Y'],
mode='markers',
marker=dict(symbol='star', color='black', size=15),
name='actual patient'
))
d = fig.to_dict()
d["data"][0]["type"] = "scatter"
fig=go.Figure(d)
# DECODER RECONSTRUCTION PLOT
# fig_reconstruction = plt.figure(figsize=(10,8))
# sns.set(font_scale = 2)
# sns.set_style("white")
# plt.plot(df_data[0], 'black',linewidth=2)
# plt.plot(heartbeat_decoder_preds[0], 'red',linewidth=2)
# plt.fill_between(np.arange(140), heartbeat_decoder_preds[0], df_data[0], color='lightcoral')
# plt.legend(labels=["Input", "Reconstruction", "Error"])
fig_reconstruction = go.Figure()
sns.set(font_scale=2)
sns.set_style("white")
# Plot 'Input' and 'Reconstruction' lines
fig_reconstruction.add_trace(
go.Scatter(x=np.arange(140), y=df_data[0], fill=None, mode='lines', name='Input', line=dict(color='black', width=3)))
fig_reconstruction.add_trace(
go.Scatter(x=np.arange(140), y=heartbeat_decoder_preds[0], fill=None, mode='lines', name='Reconstruction',
line=dict(color='red', width=3)))
# Create a custom fill area
fill_x = list(np.arange(140)) + list(reversed(np.arange(140)))
fill_y = list(heartbeat_decoder_preds[0]) + list(reversed(df_data[0]))
fig_reconstruction.add_trace(go.Scatter(x=fill_x, y=fill_y, fill='tozeroy', fillcolor='rgba(255, 182, 193, 10.0)', mode='lines', line=dict(color='rgba(255, 182, 193, 0.5)', width=0), name='Error'))
# Customize the legend's position (outside the graph)
fig_reconstruction.update_layout(
legend=dict(
x=1.1, # Adjust the x-coordinate to position the legend outside
y=1.05, # Adjust the y-coordinate to position the legend
)
)
#classification probability
# ----------DECISION TREE ANALYSIS---------------------------------
# Define the desired column order
encoded_features = ['ST_Slope_Up', 'ST_Slope_Flat', 'ST_Slope_Down', 'ChestPainType_ASY', 'ChestPainType_ATA', 'ChestPainType_NAP', 'ChestPainType_TA'] #il modello vuole le colonne in un determinato ordine
X_plot = pd.DataFrame(columns=encoded_features)
for k in range(len(df_tree['ST_Slope'])):
X_plot.loc[k] = 0
if df_tree['ST_Slope'][k] == 'Up':
X_plot['ST_Slope_Up'][k] = 1
if df_tree['ST_Slope'][k] == 'Flat':
X_plot['ST_Slope_Flat'][k] = 1
if df_tree['ST_Slope'][k] == 'Down':
X_plot['ST_Slope_Down'][k] = 1
if df_tree['ChestPainType'][k] == 'ASY':
X_plot['ChestPainType_ASY'][k] = 1
if df_tree['ChestPainType'][k] == 'ATA':
X_plot['ChestPainType_ATA'][k] = 1
if df_tree['ChestPainType'][k] == 'NAP':
X_plot['ChestPainType_NAP'][k] = 1
if df_tree['ChestPainType'][k] == 'TA':
X_plot['ChestPainType_TA'][k] = 1
#model prediction
y_score = decision_tree.predict_proba(X_plot)[:,1]
chest_pain = []
slop = []
for k in range(len(X_plot)):
if X_plot['ChestPainType_ASY'][k] == 1 and X_plot['ChestPainType_ATA'][k] == 0 and X_plot['ChestPainType_NAP'][k] == 0 and X_plot['ChestPainType_TA'][k] == 0:
chest_pain.append(0)
if X_plot['ChestPainType_ASY'][k] == 0 and X_plot['ChestPainType_ATA'][k] == 1 and X_plot['ChestPainType_NAP'][k] == 0 and X_plot['ChestPainType_TA'][k] == 0:
chest_pain.append(1)
if X_plot['ChestPainType_ASY'][k] == 0 and X_plot['ChestPainType_ATA'][k] == 0 and X_plot['ChestPainType_NAP'][k] == 1 and X_plot['ChestPainType_TA'][k] == 0:
chest_pain.append(2)
if X_plot['ChestPainType_ASY'][k] == 0 and X_plot['ChestPainType_ATA'][k] == 0 and X_plot['ChestPainType_NAP'][k] == 0 and X_plot['ChestPainType_TA'][k] == 1:
chest_pain.append(3)
if X_plot['ST_Slope_Up'][k] == 1 and X_plot['ST_Slope_Flat'][k] == 0 and X_plot['ST_Slope_Down'][k] == 0:
slop.append(0)
if X_plot['ST_Slope_Up'][k] == 0 and X_plot['ST_Slope_Flat'][k] == 1 and X_plot['ST_Slope_Down'][k] == 0:
slop.append(1)
if X_plot['ST_Slope_Up'][k] == 0 and X_plot['ST_Slope_Flat'][k] == 0 and X_plot['ST_Slope_Down'][k] == 1:
slop.append(2)
# Create a structured grid
fig_tree = plt.figure()
x1 = np.linspace(df_plot['ST_Slope'].min()-0.5, df_plot['ST_Slope'].max()+0.5)
x2 = np.linspace(df_plot['ChestPainType'].min()-0.5, df_plot['ChestPainType'].max()+0.5)
X1, X2 = np.meshgrid(x1, x2)
# Interpolate the 'Prob' values onto the grid
points = df_plot[['ST_Slope', 'ChestPainType']].values
values = df_plot['Prob'].values
Z = griddata(points, values, (X1, X2), method='nearest')
# Create the contour plot with regions colored by interpolated 'Prob'
plt.contourf(X1, X2, Z, cmap='coolwarm', levels=10)
plt.colorbar(label='Predicted Probability')
# Add data points if needed
plt.scatter(slop[:1], chest_pain[:1], c="k", cmap='coolwarm', edgecolor='k', marker='o', label=f'prob={y_score[:1].round(3)}')
# Remove the numerical labels from the x and y axes
plt.xticks([])
plt.yticks([])
# Add custom labels "0" and "1" near the center of the axis
plt.text(0.0, -0.7, "Up", ha='center',fontsize=15)
plt.text(1.00, -0.7, "Flat", ha='center',fontsize=15)
plt.text(2.00, -0.7, "Down", ha='center',fontsize=15)
plt.text(-0.62, 0.0, "ASY", rotation='vertical', va='center',fontsize=15)
plt.text(-0.62, 1.00, "ATA", rotation='vertical', va='center',fontsize=15)
plt.text(-0.62, 2.0, "NAP", rotation='vertical', va='center',fontsize=15)
plt.text(-0.62, 3.0, "TA", rotation='vertical', va='center',fontsize=15)
# Add labels and title
plt.xlabel('ST_Slope', fontsize=15, labelpad=20)
plt.ylabel('ChestPainType', fontsize=15, labelpad=20)
#plt.legend()
# ------------LLM ANALYSIS------------------------------------
df_llm_encoding = df_encoding(df_llm)
df_point_LLM = LLM_transform(df_llm_encoding)
df_point_LLM.columns = [str(column) for column in df_point_LLM.columns]
pca_llm_point = pca_2d_llm_clusters.transform(df_point_LLM)
pca_llm_point.columns = ["comp1", "comp2"]
#clusters
# fig_llm_cluster = plt.figure()
# x = df_pca_llm['comp1']
# y = df_pca_llm['comp2']
# labels = ['Cluster 0', 'Cluster 1', 'Cluster 2', 'Cluster 3']
# # Create a dictionary to map 'RestingECG' values to colors
# color_mapping = {0: 'r', 1: 'b', 2: 'g', 3: 'y'}
# for i in df_pca_llm['cluster'].unique():
# color = color_mapping.get(i, 'k') # Use 'k' (black) for undefined values
# plt.scatter(x[df_pca_llm['cluster'] == i], y[df_pca_llm['cluster'] == i], c=color, label=labels[i])
# plt.scatter(pca_llm_point['comp1'], pca_llm_point['comp1'], c='k', marker='D')
# # Remove the numerical labels from the x and y axes
# plt.xticks([])
# plt.yticks([])
# plt.xlabel('Principal Component 1')
# plt.ylabel('Principal Component 2')
# plt.legend()
# plt.grid(False)
fig_llm_cluster = go.Figure() #use plotly for this, otherwise with matplotlib the legend will be ouside of the image when we use gradio
for cluster in df_pca_llm['cluster'].unique():
cluster_data = df_pca_llm[df_pca_llm['cluster'] == cluster]
fig_llm_cluster.add_trace(
go.Scatter(x=cluster_data['comp1'], y=cluster_data['comp2'], mode='markers', name=f'Cluster {cluster}'))
# Customize the marker size
fig_llm_cluster.update_traces(marker=dict(size=12))
# Set axis labels
fig_llm_cluster.update_xaxes(title_text="Principal Component 1")
fig_llm_cluster.update_yaxes(title_text="Principal Component 2")
# Add the additional point
fig_llm_cluster.add_trace(
go.Scatter(x=pca_llm_point['comp1'], y=pca_llm_point['comp2'], mode='markers', name='Patient',
marker=dict(size=12, symbol='diamond', line=dict(width=2, color='Black'))))
# Customize the legend's position (outside the graph)
fig_llm_cluster.update_layout(
legend=dict(
x=1.05, # Adjust the x-coordinate to position the legend outside
y=1 # Adjust the y-coordinate to position the legend
)
)
# Deactivate the grid
fig_llm_cluster.update_xaxes(showgrid=False)
fig_llm_cluster.update_yaxes(showgrid=False)
return fig, fig_reconstruction , f"Heart disease probability: {int(p_class_res[0]*100)} %" , fig_tree , f"Heart disease probability: {int(y_score[0]*100)} %" , fig_llm_cluster
#demo app
with gr.Blocks(title="TIQUE - AI DEMO CAPABILITIES") as demo:
# demo = gr.Blocks()
# with demo:
gr.Markdown("<h1><center>TIQUE: AI DEMO CAPABILITIES<center><h1>")
with gr.Row():
pazienti = ["Elisabeth Smith","Michael Mims"]
menu_pazienti = gr.Dropdown(choices=pazienti,label="patients")
available_ecg_result = gr.Textbox()
menu_pazienti.input(ecg_availability, inputs=[menu_pazienti], outputs=[available_ecg_result])
with gr.Row():
input_file = gr.UploadButton("Upload patient's data and latest ECG 📁")
text_upload_results = gr.Textbox()
input_file.upload(upload_ecg,inputs=[input_file],outputs=text_upload_results)
with gr.Row():
ecg_start_analysis_button = gr.Button(value="Start data analysis",scale=1)
gr.Markdown("## Patient positioning on clusters")
with gr.Row():
llm_cluster = gr.Plot()
gr.Markdown("## ECG analysis:")
with gr.Row():
with gr.Column():
latent_space_representation = gr.Plot()
with gr.Column():
autoencoder_ecg_reconstruction = gr.Plot()
classifier_nn_prediction = gr.Textbox()
gr.Markdown("## Patient's classification based on Chest Pain Type and ST Slope:")
with gr.Row():
decision_tree_plot = gr.Plot()
decision_tree_proba = gr.Textbox()
ecg_start_analysis_button.click(fn=ecg_analysis, inputs=None, outputs=[latent_space_representation,
autoencoder_ecg_reconstruction,
classifier_nn_prediction,decision_tree_plot, decision_tree_proba,
llm_cluster])
if __name__ == "__main__":
demo.launch()
|