Upload run.ipynb
Browse files
run.ipynb
ADDED
|
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": []
|
| 7 |
+
},
|
| 8 |
+
"kernelspec": {
|
| 9 |
+
"name": "python3",
|
| 10 |
+
"display_name": "Python 3"
|
| 11 |
+
},
|
| 12 |
+
"language_info": {
|
| 13 |
+
"name": "python"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"cells": [
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": 3,
|
| 20 |
+
"metadata": {
|
| 21 |
+
"id": "yowZ_FwQ53s6"
|
| 22 |
+
},
|
| 23 |
+
"outputs": [],
|
| 24 |
+
"source": [
|
| 25 |
+
"!pip install -q seaborn plotly sentence-transformers prince gradio==3.41.2"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"source": [
|
| 31 |
+
"import matplotlib.pyplot as plt\n",
|
| 32 |
+
"import numpy as np\n",
|
| 33 |
+
"import pandas as pd\n",
|
| 34 |
+
"import os\n",
|
| 35 |
+
"import tensorflow as tf\n",
|
| 36 |
+
"from tensorflow import keras\n",
|
| 37 |
+
"import seaborn as sns\n",
|
| 38 |
+
"\n",
|
| 39 |
+
"from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score\n",
|
| 40 |
+
"from sklearn.metrics import f1_score, confusion_matrix, precision_recall_curve, roc_curve\n",
|
| 41 |
+
"from sklearn.metrics import ConfusionMatrixDisplay\n",
|
| 42 |
+
"\n",
|
| 43 |
+
"from sklearn.model_selection import train_test_split\n",
|
| 44 |
+
"from tensorflow.keras import layers, losses\n",
|
| 45 |
+
"from tensorflow.keras.datasets import fashion_mnist\n",
|
| 46 |
+
"from tensorflow.keras.models import Model\n",
|
| 47 |
+
"\n",
|
| 48 |
+
"from plotly.subplots import make_subplots\n",
|
| 49 |
+
"import plotly.graph_objects as go\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"from sklearn.decomposition import PCA\n",
|
| 52 |
+
"\n",
|
| 53 |
+
"import plotly.express as px\n",
|
| 54 |
+
"from scipy.interpolate import griddata\n",
|
| 55 |
+
"import sklearn\n",
|
| 56 |
+
"from sklearn.tree import DecisionTreeClassifier\n",
|
| 57 |
+
"from sklearn.metrics import confusion_matrix, precision_score, roc_auc_score, precision_recall_curve\n",
|
| 58 |
+
"from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, cross_val_predict, StratifiedKFold\n",
|
| 59 |
+
"from sentence_transformers import SentenceTransformer\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"from sklearn import tree\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"import gradio as gr\n",
|
| 65 |
+
"import os\n",
|
| 66 |
+
"import json\n",
|
| 67 |
+
"from datetime import datetime, timedelta\n",
|
| 68 |
+
"import shutil\n",
|
| 69 |
+
"import random\n",
|
| 70 |
+
"import plotly.io as pio\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"import joblib\n",
|
| 73 |
+
"\n",
|
| 74 |
+
"\n",
|
| 75 |
+
"\n",
|
| 76 |
+
"#load models\n",
|
| 77 |
+
"autoencoder = keras.models.load_model('models/autoencoder')\n",
|
| 78 |
+
"classifier = keras.models.load_model('models/classifier')\n",
|
| 79 |
+
"decision_tree = joblib.load(\"models/decision_tree_model.pkl\")\n",
|
| 80 |
+
"llm_model = SentenceTransformer(r\"sentence-transformers/paraphrase-MiniLM-L6-v2\")\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"pca_2d_llm_clusters = joblib.load('models/pca_llm_model.pkl')\n",
|
| 83 |
+
"\n",
|
| 84 |
+
"print(\"models loaded\")\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"#compute training dataset constant (min and max) for data normalization\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"dataframe = pd.read_csv('ecg.csv', header=None)\n",
|
| 91 |
+
"dataframe[140] = dataframe[140].apply(lambda x: 1 if x==0 else 0)\n",
|
| 92 |
+
"\n",
|
| 93 |
+
"df_ecg = dataframe[[i for i in range(140)]]\n",
|
| 94 |
+
"ecg_raw_data = df_ecg.values\n",
|
| 95 |
+
"labels = dataframe.values[:, -1]\n",
|
| 96 |
+
"ecg_data = ecg_raw_data[:, :]\n",
|
| 97 |
+
"train_data, test_data, train_labels, test_labels = train_test_split(\n",
|
| 98 |
+
" ecg_data, labels, test_size=0.2, random_state=21)\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"min_val = tf.reduce_min(train_data)\n",
|
| 101 |
+
"max_val = tf.reduce_max(train_data)\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"print(\"constant computing: OK\")\n",
|
| 104 |
+
"\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"#compute PCA for latent space representation\n",
|
| 107 |
+
"\n",
|
| 108 |
+
"ecg_data = (ecg_data - min_val) / (max_val - min_val)\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"ecg_data = tf.cast(ecg_data, tf.float32)\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"print(ecg_data.shape)\n",
|
| 113 |
+
"X = autoencoder.encoder(ecg_data).numpy()\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"n_components=2\n",
|
| 116 |
+
"pca = PCA(n_components=n_components)\n",
|
| 117 |
+
"X_compressed = pca.fit_transform(X)\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"\n",
|
| 120 |
+
"column_names = [f\"Feature{i + 1}\" for i in range(n_components)]\n",
|
| 121 |
+
"categories = [\"normal\",\"heart disease\"]\n",
|
| 122 |
+
"target_categorical = pd.Categorical.from_codes(labels.astype(int), categories=categories)\n",
|
| 123 |
+
"df_compressed = pd.DataFrame(X_compressed, columns=column_names)\n",
|
| 124 |
+
"df_compressed[\"target\"] = target_categorical\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"print(\"PCA: done\")\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"#load dataset for decision tree map plot\n",
|
| 130 |
+
"df_plot = pd.read_csv(\"df_mappa.csv\", sep=\",\", header=0)\n",
|
| 131 |
+
"print(\"df map for decision tree loaded.\")\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"#load dataset form llm pca\n",
|
| 134 |
+
"df_pca_llm = pd.read_csv(\"df_PCA_llm.csv\",sep=\",\",header=0)\n",
|
| 135 |
+
"\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"\n",
|
| 138 |
+
"\n",
|
| 139 |
+
"\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"#useful functions\n",
|
| 142 |
+
"\n",
|
| 143 |
+
"def df_encoding(df):\n",
|
| 144 |
+
" df.ExerciseAngina.replace(\n",
|
| 145 |
+
" {\n",
|
| 146 |
+
" 'N' : 'No',\n",
|
| 147 |
+
" 'Y' : 'exercise-induced angina'\n",
|
| 148 |
+
" },\n",
|
| 149 |
+
" inplace = True\n",
|
| 150 |
+
" )\n",
|
| 151 |
+
" df.FastingBS.replace(\n",
|
| 152 |
+
" {\n",
|
| 153 |
+
" 0 : 'Not Diabetic',\n",
|
| 154 |
+
" 1 : 'High fasting blood sugar'\n",
|
| 155 |
+
" },\n",
|
| 156 |
+
" inplace = True\n",
|
| 157 |
+
" )\n",
|
| 158 |
+
" df.Sex.replace(\n",
|
| 159 |
+
" {\n",
|
| 160 |
+
" 'M' : 'Man',\n",
|
| 161 |
+
" 'F' : 'Female'\n",
|
| 162 |
+
" },\n",
|
| 163 |
+
" inplace = True\n",
|
| 164 |
+
" )\n",
|
| 165 |
+
" df.ChestPainType.replace(\n",
|
| 166 |
+
" {\n",
|
| 167 |
+
" 'ATA' : 'Atypical',\n",
|
| 168 |
+
" 'NAP' : 'Non-Anginal Pain',\n",
|
| 169 |
+
" 'ASY' : 'Asymptomatic',\n",
|
| 170 |
+
" 'TA' : 'Typical Angina'\n",
|
| 171 |
+
" },\n",
|
| 172 |
+
" inplace = True\n",
|
| 173 |
+
" )\n",
|
| 174 |
+
" df.RestingECG.replace(\n",
|
| 175 |
+
" {\n",
|
| 176 |
+
" 'Normal' : 'Normal',\n",
|
| 177 |
+
" 'ST' : 'ST-T wave abnormality',\n",
|
| 178 |
+
" 'LVH' : 'Probable left ventricular hypertrophy'\n",
|
| 179 |
+
" },\n",
|
| 180 |
+
" inplace = True\n",
|
| 181 |
+
" )\n",
|
| 182 |
+
" df.ST_Slope.replace(\n",
|
| 183 |
+
" {\n",
|
| 184 |
+
" 'Up' : 'Up',\n",
|
| 185 |
+
" 'Flat' : 'Flat',\n",
|
| 186 |
+
" 'Down' : 'Downsloping'\n",
|
| 187 |
+
" },\n",
|
| 188 |
+
" inplace = True\n",
|
| 189 |
+
" )\n",
|
| 190 |
+
"\n",
|
| 191 |
+
" return df\n",
|
| 192 |
+
"\n",
|
| 193 |
+
"\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"def compile_text_no_target(x):\n",
|
| 196 |
+
"\n",
|
| 197 |
+
"\n",
|
| 198 |
+
" text = f\"\"\"Age: {x['Age']},\n",
|
| 199 |
+
" Sex: {x['Sex']},\n",
|
| 200 |
+
" Chest Pain Type: {x['ChestPainType']},\n",
|
| 201 |
+
" RestingBP: {x['RestingBP']},\n",
|
| 202 |
+
" Cholesterol: {x['Cholesterol']},\n",
|
| 203 |
+
" FastingBS: {x['FastingBS']},\n",
|
| 204 |
+
" RestingECG: {x['RestingECG']},\n",
|
| 205 |
+
" MaxHR: {x['MaxHR']}\n",
|
| 206 |
+
" Exercise Angina: {x['ExerciseAngina']},\n",
|
| 207 |
+
" Old peak: {x['Oldpeak']},\n",
|
| 208 |
+
" ST_Slope: {x['ST_Slope']}\n",
|
| 209 |
+
" \"\"\"\n",
|
| 210 |
+
"\n",
|
| 211 |
+
" return text\n",
|
| 212 |
+
"\n",
|
| 213 |
+
"def LLM_transform(df , model = llm_model):\n",
|
| 214 |
+
" sentences = df.apply(lambda x: compile_text_no_target(x), axis=1).tolist()\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"\n",
|
| 217 |
+
"\n",
|
| 218 |
+
" #model = SentenceTransformer(r\"sentence-transformers/paraphrase-MiniLM-L6-v2\")\n",
|
| 219 |
+
"\n",
|
| 220 |
+
" output = model.encode(sentences=sentences, show_progress_bar= True, normalize_embeddings = True)\n",
|
| 221 |
+
"\n",
|
| 222 |
+
" df_embedding = pd.DataFrame(output)\n",
|
| 223 |
+
"\n",
|
| 224 |
+
" return df_embedding\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"\n",
|
| 227 |
+
"\n",
|
| 228 |
+
"\n",
|
| 229 |
+
"\n",
|
| 230 |
+
"\n",
|
| 231 |
+
"\n",
|
| 232 |
+
"\n",
|
| 233 |
+
"\n",
|
| 234 |
+
"def upload_ecg(file):\n",
|
| 235 |
+
"\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"\n",
|
| 238 |
+
" if len(os.listdir(\"current_ecg\"))>0: # se ci sono file nella cartella, eliminali\n",
|
| 239 |
+
"\n",
|
| 240 |
+
" try:\n",
|
| 241 |
+
" for filename in os.listdir(\"current_ecg\"):\n",
|
| 242 |
+
" file_path = os.path.join(\"current_ecg\", filename)\n",
|
| 243 |
+
" if os.path.isfile(file_path):\n",
|
| 244 |
+
" os.remove(file_path)\n",
|
| 245 |
+
" print(f\"I file nella cartella 'current_ecg' sono stati eliminati.\")\n",
|
| 246 |
+
"\n",
|
| 247 |
+
" except Exception as e:\n",
|
| 248 |
+
" print(f\"Errore nell'eliminazione dei file: {str(e)}\")\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"\n",
|
| 251 |
+
"\n",
|
| 252 |
+
" df = pd.read_csv(file.name,header=None) #file.name è il path temporaneo del file caricato\n",
|
| 253 |
+
"\n",
|
| 254 |
+
"\n",
|
| 255 |
+
" source_directory = os.path.dirname(file.name) # Replace with the source directory path\n",
|
| 256 |
+
" destination_directory = 'current_ecg' # Replace with the destination directory path\n",
|
| 257 |
+
"\n",
|
| 258 |
+
"\n",
|
| 259 |
+
" # Specify the filename (including the extension) of the CSV file you want to copy\n",
|
| 260 |
+
" file_to_copy = os.path.basename(file.name) # Replace with the actual filename\n",
|
| 261 |
+
"\n",
|
| 262 |
+
"\n",
|
| 263 |
+
" # Construct the full source and destination file paths\n",
|
| 264 |
+
" source_file_path = f\"{source_directory}/{file_to_copy}\"\n",
|
| 265 |
+
" destination_file_path = f\"{destination_directory}/{file_to_copy}\"\n",
|
| 266 |
+
"\n",
|
| 267 |
+
" # Copy the file from the source directory to the destination directory\n",
|
| 268 |
+
" shutil.copy(source_file_path, destination_file_path)\n",
|
| 269 |
+
"\n",
|
| 270 |
+
"\n",
|
| 271 |
+
" return \"Your ECG is ready, you can analyze it!\"\n",
|
| 272 |
+
"\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"\n",
|
| 275 |
+
"\n",
|
| 276 |
+
"\n",
|
| 277 |
+
"\n",
|
| 278 |
+
"\n",
|
| 279 |
+
"\n",
|
| 280 |
+
"\n",
|
| 281 |
+
"\n",
|
| 282 |
+
"def ecg_availability(patient_name):\n",
|
| 283 |
+
"\n",
|
| 284 |
+
" folder_path = os.path.join(\"PATIENT\",patient_name)\n",
|
| 285 |
+
" status_file_path = os.path.join(folder_path, \"status.json\")\n",
|
| 286 |
+
"\n",
|
| 287 |
+
" # Check if the \"status.json\" file exists\n",
|
| 288 |
+
" if not os.path.isfile(status_file_path):\n",
|
| 289 |
+
" return None # If the file doesn't exist, return None\n",
|
| 290 |
+
"\n",
|
| 291 |
+
" # Load the JSON data from the \"status.json\" file\n",
|
| 292 |
+
" with open(status_file_path, 'r') as status_file:\n",
|
| 293 |
+
" status_data = json.load(status_file)\n",
|
| 294 |
+
"\n",
|
| 295 |
+
" # Extract the last datetime from the status JSON (if available)\n",
|
| 296 |
+
" last_datetime_str = status_data.get(\"last_datetime\", None)\n",
|
| 297 |
+
"\n",
|
| 298 |
+
" # Get the list of CSV files in the folder\n",
|
| 299 |
+
" csv_files = [f for f in os.listdir(folder_path) if f.endswith(\".csv\")]\n",
|
| 300 |
+
"\n",
|
| 301 |
+
" if last_datetime_str is None:\n",
|
| 302 |
+
" return f\"New ECG available\" # If the JSON is empty, return all CSV files\n",
|
| 303 |
+
"\n",
|
| 304 |
+
" last_datetime = datetime.strptime(last_datetime_str, \"%B_%d_%H_%M_%S\")\n",
|
| 305 |
+
"\n",
|
| 306 |
+
" # Find successive CSV files\n",
|
| 307 |
+
" successive_csv_files = []\n",
|
| 308 |
+
" for csv_file in csv_files:\n",
|
| 309 |
+
" csv_datetime_str = csv_file.split('.')[0]\n",
|
| 310 |
+
" csv_datetime = datetime.strptime(csv_datetime_str, \"%B_%d_%H_%M_%S\")\n",
|
| 311 |
+
"\n",
|
| 312 |
+
" # Check if the CSV datetime is successive to the last saved datetime\n",
|
| 313 |
+
" if csv_datetime > last_datetime:\n",
|
| 314 |
+
" successive_csv_files.append(csv_file)\n",
|
| 315 |
+
"\n",
|
| 316 |
+
" if len(successive_csv_file)>0:\n",
|
| 317 |
+
" return f\"New ECG available (last ECG: {last_datetime})\"\n",
|
| 318 |
+
"\n",
|
| 319 |
+
" else:\n",
|
| 320 |
+
" return f\"No ECG available (last ECG: {last_datetime})\"\n",
|
| 321 |
+
"\n",
|
| 322 |
+
"\n",
|
| 323 |
+
"\n",
|
| 324 |
+
"\n",
|
| 325 |
+
"def ecg_analysis():\n",
|
| 326 |
+
"\n",
|
| 327 |
+
" df = pd.read_csv(os.path.join(\"current_ecg\",os.listdir(\"current_ecg\")[0]))\n",
|
| 328 |
+
"\n",
|
| 329 |
+
"\n",
|
| 330 |
+
" df_ecg = df[[str(i) for i in range(140)]] #ecg data columns\n",
|
| 331 |
+
" df_data = df_ecg.values #raw data. shape: (n_rows , 140)\n",
|
| 332 |
+
" df_data = (df_data - min_val) / (max_val - min_val)\n",
|
| 333 |
+
" df_data = tf.cast(df_data, tf.float32) #raw data. shape: (n_rows , 140)\n",
|
| 334 |
+
"\n",
|
| 335 |
+
"\n",
|
| 336 |
+
" df_tree = df[[\"ChestPainType\",\"ST_Slope\"]].copy() #dataset for decision tree\n",
|
| 337 |
+
"\n",
|
| 338 |
+
" df_llm = df[[\"Age\",\"Sex\",\"ChestPainType\",\"RestingBP\",\"Cholesterol\",\"FastingBS\",\"RestingECG\",\"MaxHR\",\"ExerciseAngina\",\"Oldpeak\",\"ST_Slope\"]].copy() # dataset for LLM\n",
|
| 339 |
+
"\n",
|
| 340 |
+
" true_label = df.values[:,-1]\n",
|
| 341 |
+
"\n",
|
| 342 |
+
" # ----------------ECG ANALYSIS WITH AUTOENCODER-------------------------------\n",
|
| 343 |
+
" heartbeat_encoder_preds = autoencoder.encoder(df_data).numpy() #encoder data representation. shape: (n_rows , 8)\n",
|
| 344 |
+
" heartbeat_decoder_preds = autoencoder.decoder(heartbeat_encoder_preds).numpy() #decoder data reconstruction. shape: (n_rows , 140)\n",
|
| 345 |
+
"\n",
|
| 346 |
+
" classification_res = classifier.predict(df_data) #shape: (n_rows , 1)\n",
|
| 347 |
+
"\n",
|
| 348 |
+
"\n",
|
| 349 |
+
" print(\"shapes of: encoder preds, decoder preds, classification preds/n\",heartbeat_encoder_preds.shape,heartbeat_decoder_preds.shape,classification_res.shape)\n",
|
| 350 |
+
"\n",
|
| 351 |
+
" #heartbeat_indexes = [i for i, pred in enumerate(classification_res) if pred == 0]\n",
|
| 352 |
+
"\n",
|
| 353 |
+
" p_encoder_preds = heartbeat_encoder_preds[0,:] #encoder representation of the chosen row\n",
|
| 354 |
+
" p_decoder_preds = heartbeat_decoder_preds[0,:] #decoder reconstruction of the chosen row\n",
|
| 355 |
+
" p_class_res = classification_res[0,:] # classification res of the chosen row\n",
|
| 356 |
+
" p_true = true_label[0]\n",
|
| 357 |
+
"\n",
|
| 358 |
+
"\n",
|
| 359 |
+
"\n",
|
| 360 |
+
"\n",
|
| 361 |
+
" #LATENT SPACE PLOT\n",
|
| 362 |
+
"\n",
|
| 363 |
+
" # Create the scatter plot\n",
|
| 364 |
+
" fig = px.scatter(df_compressed, x='Feature1', y='Feature2', color='target', color_discrete_map={0: 'red', 1: 'blue'},\n",
|
| 365 |
+
" labels={'Target': 'Binary Target'},size_max=18)\n",
|
| 366 |
+
"\n",
|
| 367 |
+
"\n",
|
| 368 |
+
" # Disable hover information\n",
|
| 369 |
+
" # fig.update_traces(mode=\"markers\",\n",
|
| 370 |
+
" # hovertemplate = None,\n",
|
| 371 |
+
" # hoverinfo = \"skip\")\n",
|
| 372 |
+
"\n",
|
| 373 |
+
" # Customize the plot layout\n",
|
| 374 |
+
" fig.update_layout(\n",
|
| 375 |
+
" title='Latent space 2D (PCA reduction)',\n",
|
| 376 |
+
" xaxis_title='component 1',\n",
|
| 377 |
+
" yaxis_title='component 2'\n",
|
| 378 |
+
" )\n",
|
| 379 |
+
"\n",
|
| 380 |
+
" # add new point\n",
|
| 381 |
+
" new_point_compressed = pca.transform(p_encoder_preds.reshape(1,-1))\n",
|
| 382 |
+
"\n",
|
| 383 |
+
" new_point = {'X':[new_point_compressed[0][0]] , 'Y':[new_point_compressed[0][1]] } # Target value 2 for the new point\n",
|
| 384 |
+
"\n",
|
| 385 |
+
" new_point_df = pd.DataFrame(new_point)\n",
|
| 386 |
+
"\n",
|
| 387 |
+
" #fig.add_trace(px.scatter(new_point_df, x='X', y='Y').data[0])\n",
|
| 388 |
+
" fig.add_trace(go.Scatter(\n",
|
| 389 |
+
" x=new_point_df['X'],\n",
|
| 390 |
+
" y=new_point_df['Y'],\n",
|
| 391 |
+
" mode='markers',\n",
|
| 392 |
+
" marker=dict(symbol='star', color='black', size=15),\n",
|
| 393 |
+
" name='actual patient'\n",
|
| 394 |
+
" ))\n",
|
| 395 |
+
"\n",
|
| 396 |
+
" d = fig.to_dict()\n",
|
| 397 |
+
" d[\"data\"][0][\"type\"] = \"scatter\"\n",
|
| 398 |
+
"\n",
|
| 399 |
+
" fig=go.Figure(d)\n",
|
| 400 |
+
"\n",
|
| 401 |
+
"\n",
|
| 402 |
+
"\n",
|
| 403 |
+
" # DECODER RECONSTRUCTION PLOT\n",
|
| 404 |
+
"\n",
|
| 405 |
+
" fig_reconstruction = plt.figure(figsize=(10,8))\n",
|
| 406 |
+
" sns.set(font_scale = 2)\n",
|
| 407 |
+
" sns.set_style(\"white\")\n",
|
| 408 |
+
" plt.plot(df_data[0], 'black',linewidth=2)\n",
|
| 409 |
+
" plt.plot(heartbeat_decoder_preds[0], 'red',linewidth=2)\n",
|
| 410 |
+
" plt.fill_between(np.arange(140), heartbeat_decoder_preds[0], df_data[0], color='lightcoral')\n",
|
| 411 |
+
" plt.legend(labels=[\"Input\", \"Reconstruction\", \"Error\"])\n",
|
| 412 |
+
"\n",
|
| 413 |
+
" #classification probability\n",
|
| 414 |
+
"\n",
|
| 415 |
+
" # ----------DECISION TREE ANALYSIS---------------------------------\n",
|
| 416 |
+
"\n",
|
| 417 |
+
"\n",
|
| 418 |
+
" # Define the desired column order\n",
|
| 419 |
+
" encoded_features = ['ST_Slope_Up', 'ST_Slope_Flat', 'ST_Slope_Down', 'ChestPainType_ASY', 'ChestPainType_ATA', 'ChestPainType_NAP', 'ChestPainType_TA'] #il modello vuole le colonne in un determinato ordine\n",
|
| 420 |
+
"\n",
|
| 421 |
+
" X_plot = pd.DataFrame(columns=encoded_features)\n",
|
| 422 |
+
"\n",
|
| 423 |
+
" for k in range(len(df_tree['ST_Slope'])):\n",
|
| 424 |
+
" X_plot.loc[k] = 0\n",
|
| 425 |
+
" if df_tree['ST_Slope'][k] == 'Up':\n",
|
| 426 |
+
" X_plot['ST_Slope_Up'][k] = 1\n",
|
| 427 |
+
" if df_tree['ST_Slope'][k] == 'Flat':\n",
|
| 428 |
+
" X_plot['ST_Slope_Flat'][k] = 1\n",
|
| 429 |
+
" if df_tree['ST_Slope'][k] == 'Down':\n",
|
| 430 |
+
" X_plot['ST_Slope_Down'][k] = 1\n",
|
| 431 |
+
" if df_tree['ChestPainType'][k] == 'ASY':\n",
|
| 432 |
+
" X_plot['ChestPainType_ASY'][k] = 1\n",
|
| 433 |
+
" if df_tree['ChestPainType'][k] == 'ATA':\n",
|
| 434 |
+
" X_plot['ChestPainType_ATA'][k] = 1\n",
|
| 435 |
+
" if df_tree['ChestPainType'][k] == 'NAP':\n",
|
| 436 |
+
" X_plot['ChestPainType_NAP'][k] = 1\n",
|
| 437 |
+
" if df_tree['ChestPainType'][k] == 'TA':\n",
|
| 438 |
+
" X_plot['ChestPainType_TA'][k] = 1\n",
|
| 439 |
+
"\n",
|
| 440 |
+
"\n",
|
| 441 |
+
" #model prediction\n",
|
| 442 |
+
" y_score = decision_tree.predict_proba(X_plot)[:,1]\n",
|
| 443 |
+
"\n",
|
| 444 |
+
" chest_pain = []\n",
|
| 445 |
+
" slop = []\n",
|
| 446 |
+
"\n",
|
| 447 |
+
" for k in range(len(X_plot)):\n",
|
| 448 |
+
" if X_plot['ChestPainType_ASY'][k] == 1 and X_plot['ChestPainType_ATA'][k] == 0 and X_plot['ChestPainType_NAP'][k] == 0 and X_plot['ChestPainType_TA'][k] == 0:\n",
|
| 449 |
+
" chest_pain.append(0)\n",
|
| 450 |
+
" if X_plot['ChestPainType_ASY'][k] == 0 and X_plot['ChestPainType_ATA'][k] == 1 and X_plot['ChestPainType_NAP'][k] == 0 and X_plot['ChestPainType_TA'][k] == 0:\n",
|
| 451 |
+
" chest_pain.append(1)\n",
|
| 452 |
+
" if X_plot['ChestPainType_ASY'][k] == 0 and X_plot['ChestPainType_ATA'][k] == 0 and X_plot['ChestPainType_NAP'][k] == 1 and X_plot['ChestPainType_TA'][k] == 0:\n",
|
| 453 |
+
" chest_pain.append(2)\n",
|
| 454 |
+
" if X_plot['ChestPainType_ASY'][k] == 0 and X_plot['ChestPainType_ATA'][k] == 0 and X_plot['ChestPainType_NAP'][k] == 0 and X_plot['ChestPainType_TA'][k] == 1:\n",
|
| 455 |
+
" chest_pain.append(3)\n",
|
| 456 |
+
" if X_plot['ST_Slope_Up'][k] == 1 and X_plot['ST_Slope_Flat'][k] == 0 and X_plot['ST_Slope_Down'][k] == 0:\n",
|
| 457 |
+
" slop.append(0)\n",
|
| 458 |
+
" if X_plot['ST_Slope_Up'][k] == 0 and X_plot['ST_Slope_Flat'][k] == 1 and X_plot['ST_Slope_Down'][k] == 0:\n",
|
| 459 |
+
" slop.append(1)\n",
|
| 460 |
+
" if X_plot['ST_Slope_Up'][k] == 0 and X_plot['ST_Slope_Flat'][k] == 0 and X_plot['ST_Slope_Down'][k] == 1:\n",
|
| 461 |
+
" slop.append(2)\n",
|
| 462 |
+
"\n",
|
| 463 |
+
"\n",
|
| 464 |
+
" # Create a structured grid\n",
|
| 465 |
+
" fig_tree = plt.figure()\n",
|
| 466 |
+
" x1 = np.linspace(df_plot['ST_Slope'].min()-0.5, df_plot['ST_Slope'].max()+0.5)\n",
|
| 467 |
+
" x2 = np.linspace(df_plot['ChestPainType'].min()-0.5, df_plot['ChestPainType'].max()+0.5)\n",
|
| 468 |
+
" X1, X2 = np.meshgrid(x1, x2)\n",
|
| 469 |
+
"\n",
|
| 470 |
+
" # Interpolate the 'Prob' values onto the grid\n",
|
| 471 |
+
" points = df_plot[['ST_Slope', 'ChestPainType']].values\n",
|
| 472 |
+
" values = df_plot['Prob'].values\n",
|
| 473 |
+
" Z = griddata(points, values, (X1, X2), method='nearest')\n",
|
| 474 |
+
"\n",
|
| 475 |
+
" # Create the contour plot with regions colored by interpolated 'Prob'\n",
|
| 476 |
+
" plt.contourf(X1, X2, Z, cmap='coolwarm', levels=10)\n",
|
| 477 |
+
" plt.colorbar(label='Predicted Probability')\n",
|
| 478 |
+
"\n",
|
| 479 |
+
" # Add data points if needed\n",
|
| 480 |
+
" plt.scatter(slop[:1], chest_pain[:1], c=\"k\", cmap='coolwarm', edgecolor='k', marker='o', label=f'prob={y_score[:1].round(3)}')\n",
|
| 481 |
+
"\n",
|
| 482 |
+
" # Remove the numerical labels from the x and y axes\n",
|
| 483 |
+
" plt.xticks([])\n",
|
| 484 |
+
" plt.yticks([])\n",
|
| 485 |
+
"\n",
|
| 486 |
+
" # Add custom labels \"0\" and \"1\" near the center of the axis\n",
|
| 487 |
+
" plt.text(0.0, -0.7, \"Up\", ha='center',fontsize=15)\n",
|
| 488 |
+
" plt.text(1.00, -0.7, \"Flat\", ha='center',fontsize=15)\n",
|
| 489 |
+
" plt.text(2.00, -0.7, \"Down\", ha='center',fontsize=15)\n",
|
| 490 |
+
" plt.text(-0.62, 0.0, \"ASY\", rotation='vertical', va='center',fontsize=15)\n",
|
| 491 |
+
" plt.text(-0.62, 1.00, \"ATA\", rotation='vertical', va='center',fontsize=15)\n",
|
| 492 |
+
" plt.text(-0.62, 2.0, \"NAP\", rotation='vertical', va='center',fontsize=15)\n",
|
| 493 |
+
" plt.text(-0.62, 3.0, \"TA\", rotation='vertical', va='center',fontsize=15)\n",
|
| 494 |
+
"\n",
|
| 495 |
+
" # Add labels and title\n",
|
| 496 |
+
" plt.xlabel('ST_Slope', fontsize=15, labelpad=20)\n",
|
| 497 |
+
" plt.ylabel('ChestPainType', fontsize=15, labelpad=20)\n",
|
| 498 |
+
" #plt.legend()\n",
|
| 499 |
+
"\n",
|
| 500 |
+
"\n",
|
| 501 |
+
"\n",
|
| 502 |
+
" # ------------LLM ANALYSIS------------------------------------\n",
|
| 503 |
+
"\n",
|
| 504 |
+
" df_llm_encoding = df_encoding(df_llm)\n",
|
| 505 |
+
" df_point_LLM = LLM_transform(df_llm_encoding)\n",
|
| 506 |
+
"\n",
|
| 507 |
+
" df_point_LLM.columns = [str(column) for column in df_point_LLM.columns]\n",
|
| 508 |
+
"\n",
|
| 509 |
+
" pca_llm_point = pca_2d_llm_clusters.transform(df_point_LLM)\n",
|
| 510 |
+
" pca_llm_point.columns = [\"comp1\", \"comp2\"]\n",
|
| 511 |
+
"\n",
|
| 512 |
+
"\n",
|
| 513 |
+
" #clusters\n",
|
| 514 |
+
"\n",
|
| 515 |
+
" fig_llm_cluster = plt.figure()\n",
|
| 516 |
+
" x = df_pca_llm['comp1']\n",
|
| 517 |
+
" y = df_pca_llm['comp2']\n",
|
| 518 |
+
"\n",
|
| 519 |
+
" labels = ['Cluster 0', 'Cluster 1', 'Cluster 2', 'Cluster 3']\n",
|
| 520 |
+
"\n",
|
| 521 |
+
" # Create a dictionary to map 'RestingECG' values to colors\n",
|
| 522 |
+
" color_mapping = {0: 'r', 1: 'b', 2: 'g', 3: 'y'}\n",
|
| 523 |
+
"\n",
|
| 524 |
+
" for i in df_pca_llm['cluster'].unique():\n",
|
| 525 |
+
" color = color_mapping.get(i, 'k') # Use 'k' (black) for undefined values\n",
|
| 526 |
+
" plt.scatter(x[df_pca_llm['cluster'] == i], y[df_pca_llm['cluster'] == i], c=color, label=labels[i])\n",
|
| 527 |
+
"\n",
|
| 528 |
+
" plt.scatter(pca_llm_point['comp1'], pca_llm_point['comp1'], c='k', marker='D')\n",
|
| 529 |
+
"\n",
|
| 530 |
+
" # Remove the numerical labels from the x and y axes\n",
|
| 531 |
+
" plt.xticks([])\n",
|
| 532 |
+
" plt.yticks([])\n",
|
| 533 |
+
"\n",
|
| 534 |
+
" plt.xlabel('Principal Component 1')\n",
|
| 535 |
+
" plt.ylabel('Principal Component 2')\n",
|
| 536 |
+
" plt.legend()\n",
|
| 537 |
+
" plt.grid(False)\n",
|
| 538 |
+
"\n",
|
| 539 |
+
"\n",
|
| 540 |
+
"\n",
|
| 541 |
+
"\n",
|
| 542 |
+
"\n",
|
| 543 |
+
"\n",
|
| 544 |
+
"\n",
|
| 545 |
+
"\n",
|
| 546 |
+
" return fig, fig_reconstruction , f\"Heart disease probability: {int(p_class_res[0]*100)} %\" , fig_tree , f\"Heart disease probability: {int(y_score[0]*100)} %\" , fig_llm_cluster\n",
|
| 547 |
+
"\n",
|
| 548 |
+
"\n",
|
| 549 |
+
"\n",
|
| 550 |
+
"\n",
|
| 551 |
+
"\n",
|
| 552 |
+
"\n",
|
| 553 |
+
"\n",
|
| 554 |
+
"\n",
|
| 555 |
+
"#demo app\n",
|
| 556 |
+
"\n",
|
| 557 |
+
"with gr.Blocks(title=\"TIQUE - AI DEMO CAPABILITIES\") as demo:\n",
|
| 558 |
+
"\n",
|
| 559 |
+
" gr.Markdown(\"<h1><center>TIQUE: AI DEMO CAPABILITIES<center><h1>\")\n",
|
| 560 |
+
"\n",
|
| 561 |
+
"\n",
|
| 562 |
+
" with gr.Row():\n",
|
| 563 |
+
"\n",
|
| 564 |
+
" pazienti = [\"Elisabeth Smith\",\"Michael Mims\"]\n",
|
| 565 |
+
" menu_pazienti = gr.Dropdown(choices=pazienti,label=\"patients\")\n",
|
| 566 |
+
"\n",
|
| 567 |
+
" available_ecg_result = gr.Textbox()\n",
|
| 568 |
+
"\n",
|
| 569 |
+
"\n",
|
| 570 |
+
" menu_pazienti.input(ecg_availability, inputs=[menu_pazienti], outputs=[available_ecg_result])\n",
|
| 571 |
+
"\n",
|
| 572 |
+
" with gr.Row():\n",
|
| 573 |
+
"\n",
|
| 574 |
+
" input_file = gr.UploadButton(\"Click to Upload an ECG 📁\")\n",
|
| 575 |
+
" text_upload_results = gr.Textbox()\n",
|
| 576 |
+
"\n",
|
| 577 |
+
" input_file.upload(upload_ecg,inputs=[input_file],outputs=text_upload_results)\n",
|
| 578 |
+
"\n",
|
| 579 |
+
" with gr.Row():\n",
|
| 580 |
+
" ecg_start_analysis_button = gr.Button(value=\"Start ECG analysis\",scale=1)\n",
|
| 581 |
+
"\n",
|
| 582 |
+
"\n",
|
| 583 |
+
" gr.Markdown(\"## Large Language Model clustering\")\n",
|
| 584 |
+
"\n",
|
| 585 |
+
" with gr.Row():\n",
|
| 586 |
+
"\n",
|
| 587 |
+
" llm_cluster = gr.Plot()\n",
|
| 588 |
+
"\n",
|
| 589 |
+
"\n",
|
| 590 |
+
" gr.Markdown(\"## Autoencoder results:\")\n",
|
| 591 |
+
"\n",
|
| 592 |
+
" with gr.Row():\n",
|
| 593 |
+
"\n",
|
| 594 |
+
" with gr.Column():\n",
|
| 595 |
+
"\n",
|
| 596 |
+
" latent_space_representation = gr.Plot()\n",
|
| 597 |
+
"\n",
|
| 598 |
+
" with gr.Column():\n",
|
| 599 |
+
"\n",
|
| 600 |
+
" autoencoder_ecg_reconstruction = gr.Plot()\n",
|
| 601 |
+
"\n",
|
| 602 |
+
" classifier_nn_prediction = gr.Textbox()\n",
|
| 603 |
+
"\n",
|
| 604 |
+
" gr.Markdown(\"## Decision Tree results:\")\n",
|
| 605 |
+
"\n",
|
| 606 |
+
" with gr.Row():\n",
|
| 607 |
+
"\n",
|
| 608 |
+
" decision_tree_plot = gr.Plot()\n",
|
| 609 |
+
"\n",
|
| 610 |
+
" decision_tree_proba = gr.Textbox()\n",
|
| 611 |
+
"\n",
|
| 612 |
+
"\n",
|
| 613 |
+
"\n",
|
| 614 |
+
"\n",
|
| 615 |
+
" ecg_start_analysis_button.click(fn=ecg_analysis, inputs=None, outputs=[latent_space_representation,\n",
|
| 616 |
+
" autoencoder_ecg_reconstruction,\n",
|
| 617 |
+
" classifier_nn_prediction,decision_tree_plot, decision_tree_proba,\n",
|
| 618 |
+
" llm_cluster])\n",
|
| 619 |
+
"if __name__ == \"__main__\":\n",
|
| 620 |
+
" demo.launch()\n",
|
| 621 |
+
"\n",
|
| 622 |
+
"\n",
|
| 623 |
+
"\n",
|
| 624 |
+
"\n",
|
| 625 |
+
"\n",
|
| 626 |
+
"\n",
|
| 627 |
+
"\n",
|
| 628 |
+
"\n",
|
| 629 |
+
"\n",
|
| 630 |
+
"\n",
|
| 631 |
+
"\n",
|
| 632 |
+
"\n",
|
| 633 |
+
"\n",
|
| 634 |
+
"\n",
|
| 635 |
+
"\n",
|
| 636 |
+
"\n",
|
| 637 |
+
"\n",
|
| 638 |
+
"\n",
|
| 639 |
+
"\n",
|
| 640 |
+
"\n",
|
| 641 |
+
"\n",
|
| 642 |
+
"\n",
|
| 643 |
+
"\n",
|
| 644 |
+
"\n"
|
| 645 |
+
],
|
| 646 |
+
"metadata": {
|
| 647 |
+
"id": "bVSujh5-677-"
|
| 648 |
+
},
|
| 649 |
+
"execution_count": null,
|
| 650 |
+
"outputs": []
|
| 651 |
+
}
|
| 652 |
+
]
|
| 653 |
+
}
|