File size: 10,423 Bytes
85b7206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0700cb3
 
 
 
 
 
 
 
 
 
85b7206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0700cb3
 
 
 
 
 
 
 
 
85b7206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0700cb3
 
 
 
 
 
 
 
 
 
 
85b7206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0700cb3
 
 
 
 
 
 
 
 
 
 
85b7206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0700cb3
 
 
 
 
 
 
 
 
 
 
85b7206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import time
from string import punctuation
from typing import List, Tuple

import numpy as np
from dtwalign import dtw_from_distance_matrix
from ortools.sat.python import cp_model

import WordMetrics
from constants import app_logger

offset_blank = 1
TIME_THRESHOLD_MAPPING = 5.0


def get_word_distance_matrix(words_estimated: list, words_real: list) -> np.ndarray:
    """
    Calculate the word distance matrix using Levenshtein distance.

    Args:
        words_estimated (list): List of estimated words.
        words_real (list): List of real words.

    Returns:
        np.ndarray: The word distance matrix.
    """
    number_of_real_words = len(words_real)
    number_of_estimated_words = len(words_estimated)

    word_distance_matrix = np.zeros(
        (number_of_estimated_words + offset_blank, number_of_real_words))
    for idx_estimated in range(number_of_estimated_words):
        for idx_real in range(number_of_real_words):
            word_distance_matrix[idx_estimated, idx_real] = WordMetrics.edit_distance_python(
                words_estimated[idx_estimated], words_real[idx_real])

    if offset_blank == 1:
        for idx_real in range(number_of_real_words):
            word_distance_matrix[number_of_estimated_words,
            idx_real] = len(words_real[idx_real])
    return word_distance_matrix


def get_best_path_from_distance_matrix(word_distance_matrix):
    """
    Get the best path from the word distance matrix using constraint programming.

    Args:
        word_distance_matrix (np.ndarray): The word distance matrix.

    Returns:
        np.ndarray: The best path indices.
    """
    modelCpp = cp_model.CpModel()

    number_of_real_words = word_distance_matrix.shape[1]
    number_of_estimated_words = word_distance_matrix.shape[0] - 1

    number_words = np.maximum(number_of_real_words, number_of_estimated_words)

    estimated_words_order = [modelCpp.NewIntVar(0, int(
        number_words - 1 + offset_blank), 'w%i' % i) for i in range(number_words + offset_blank)]

    # They are in ascending order
    for word_idx in range(number_words - 1):
        modelCpp.Add(
            estimated_words_order[word_idx + 1] >= estimated_words_order[word_idx])

    total_phoneme_distance = 0
    real_word_at_time = {}
    for idx_estimated in range(number_of_estimated_words):
        for idx_real in range(number_of_real_words):
            real_word_at_time[idx_estimated, idx_real] = modelCpp.NewBoolVar(
                'real_word_at_time' + str(idx_real) + '-' + str(idx_estimated))
            modelCpp.Add(estimated_words_order[idx_estimated] == idx_real).OnlyEnforceIf(
                real_word_at_time[idx_estimated, idx_real])
            total_phoneme_distance += word_distance_matrix[idx_estimated,
            idx_real] * real_word_at_time[idx_estimated, idx_real]

    # If no word in time, difference is calculated from empty string
    for idx_real in range(number_of_real_words):
        word_has_a_match = modelCpp.NewBoolVar(
            'word_has_a_match' + str(idx_real))
        modelCpp.Add(sum([real_word_at_time[idx_estimated, idx_real] for idx_estimated in range(
            number_of_estimated_words)]) == 1).OnlyEnforceIf(word_has_a_match)
        total_phoneme_distance += word_distance_matrix[number_of_estimated_words,
        idx_real] * word_has_a_match.Not()

    # Loss should be minimized
    modelCpp.Minimize(total_phoneme_distance)

    solver = cp_model.CpSolver()
    solver.parameters.max_time_in_seconds = TIME_THRESHOLD_MAPPING
    status = solver.Solve(modelCpp)

    mapped_indices = []
    try:
        for word_idx in range(number_words):
            mapped_indices.append(
                (solver.Value(estimated_words_order[word_idx])))

        return np.array(mapped_indices, dtype=int)
    except:
        return []


def get_resulting_string(mapped_indices: np.ndarray, words_estimated: list, words_real: list) -> Tuple[List, List]:
    """
    Get the resulting string and indices from the mapped indices.

    Args:
        mapped_indices (np.ndarray): The mapped indices.
        words_estimated (list): List of estimated words.
        words_real (list): List of real words.

    Returns:
        Tuple[List, List]: The mapped words and their indices.
    """
    mapped_words = []
    mapped_words_indices = []
    WORD_NOT_FOUND_TOKEN = '-'
    number_of_real_words = len(words_real)
    for word_idx in range(number_of_real_words):
        position_of_real_word_indices = np.where(
            mapped_indices == word_idx)[0].astype(int)

        if len(position_of_real_word_indices) == 0:
            mapped_words.append(WORD_NOT_FOUND_TOKEN)
            mapped_words_indices.append(-1)
            continue

        if len(position_of_real_word_indices) == 1:
            mapped_words.append(
                words_estimated[position_of_real_word_indices[0]])
            mapped_words_indices.append(position_of_real_word_indices[0])
            continue
        # Check which index gives the lowest error
        if len(position_of_real_word_indices) > 1:
            error = 99999
            best_possible_combination = ''
            best_possible_idx = -1
            for single_word_idx in position_of_real_word_indices:
                idx_above_word = single_word_idx >= len(words_estimated)
                if idx_above_word:
                    continue
                error_word = WordMetrics.edit_distance_python(
                    words_estimated[single_word_idx], words_real[word_idx])
                if error_word < error:
                    error = error_word * 1
                    best_possible_combination = words_estimated[single_word_idx]
                    best_possible_idx = single_word_idx

            mapped_words.append(best_possible_combination)
            mapped_words_indices.append(best_possible_idx)
            continue

    return mapped_words, mapped_words_indices


def get_best_mapped_words(words_estimated: list | str, words_real: list | str, use_dtw:bool = False) -> tuple[list, list]:
    """
    Get the best mapped words using either DTW or constraint programming.

    Args:
        words_estimated (list | str): List of estimated words or a single estimated word.
        words_real (list | str): List of real words or a single real word.
        use_dtw (bool, optional): Whether to use DTW for mapping. Defaults to False.

    Returns:
        tuple[list, list]: The mapped words and their indices.
    """
    app_logger.info(f"words_estimated: '{words_estimated}', words_real: '{words_real}', use_dtw:{use_dtw}.")
    word_distance_matrix = get_word_distance_matrix(
        words_estimated, words_real)
    app_logger.debug(f"word_distance_matrix: '{word_distance_matrix}'.")
    start = time.time()
    app_logger.info(f"use_dtw: '{use_dtw}'.")
    if use_dtw:
        alignment = (dtw_from_distance_matrix(word_distance_matrix.T))
        app_logger.debug(f"alignment: '{alignment}'.")
        mapped_indices = alignment.get_warping_path()[:len(words_estimated)]
        app_logger.debug(f"mapped_indices: '{mapped_indices}'.")
        duration_of_mapping = time.time()-start
    else:
        mapped_indices = get_best_path_from_distance_matrix(word_distance_matrix)
        app_logger.debug(f"mapped_indices: '{mapped_indices}'.")
        duration_of_mapping = time.time()-start
        # In case or-tools doesn't converge, go to a faster, low-quality solution
        check_mapped_indices_or_duration = len(mapped_indices) == 0 or duration_of_mapping > TIME_THRESHOLD_MAPPING+0.5
        app_logger.info(f"check_mapped_indices_or_duration: '{check_mapped_indices_or_duration}'.")
        if check_mapped_indices_or_duration:
            #mapped_indices = (dtw_from_distance_matrix(
            #    word_distance_matrix)).path[:len(words_estimated), 1]
            word_distance_matrix_transposed = word_distance_matrix.T
            app_logger.debug(f"word_distance_matrix_transposed: '{word_distance_matrix_transposed}'.")
            alignment = dtw_from_distance_matrix(word_distance_matrix_transposed)
            app_logger.debug(f"check_mapped_indices_or_duration, alignment: '{alignment}'.")
            mapped_indices = alignment.get_warping_path()
            app_logger.debug(f"check_mapped_indices_or_duration, mapped_indices: '{mapped_indices}'.")

    mapped_words, mapped_words_indices = get_resulting_string(mapped_indices, words_estimated, words_real)
    app_logger.debug(f"mapped_words: '{mapped_words}', mapped_words_indices: '{mapped_words_indices}', duration_of_mapping:{duration_of_mapping}.")
    return mapped_words, mapped_words_indices


## Faster, but not optimal
# def get_best_mapped_words_dtw(words_estimated: list, words_real: list) -> list:
#     from dtwalign import dtw_from_distance_matrix
#     word_distance_matrix = get_word_distance_matrix(
#         words_estimated, words_real)
#     mapped_indices = dtw_from_distance_matrix(
#         word_distance_matrix).path[:-1, 0]
#
#     mapped_words, mapped_words_indices = get_resulting_string(
#         mapped_indices, words_estimated, words_real)
#     return mapped_words, mapped_words_indices


def getWhichLettersWereTranscribedCorrectly(real_word: str, transcribed_word: list) -> list:
    """
    Determine which letters were transcribed correctly.

    Args:
        real_word (str): The real word.
        transcribed_word (str): The transcribed word.

    Returns:
        list: A list indicating whether each letter was transcribed correctly (1 for correct, 0 for incorrect).
    """
    is_leter_correct = [None] * len(real_word)
    for idx, letter in enumerate(real_word):
        letter = letter.lower()
        transcribed_word[idx] = transcribed_word[idx].lower()
        if letter == transcribed_word[idx] or letter in punctuation:
            is_leter_correct[idx] = 1
        else:
            is_leter_correct[idx] = 0
    return is_leter_correct


# def parseLetterErrorsToHTML(word_real, is_leter_correct):
#     word_colored = ''
#     correct_color_start = '*'
#     correct_color_end = '*'
#     wrong_color_start = '-'
#     wrong_color_end = '-'
#     for idx, letter in enumerate(word_real):
#         if is_leter_correct[idx] == 1:
#             word_colored += correct_color_start + letter + correct_color_end
#         else:
#             word_colored += wrong_color_start + letter + wrong_color_end
#     return word_colored