Spaces:
Running
Running
File size: 10,423 Bytes
85b7206 0700cb3 85b7206 0700cb3 85b7206 0700cb3 85b7206 0700cb3 85b7206 0700cb3 85b7206 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import time
from string import punctuation
from typing import List, Tuple
import numpy as np
from dtwalign import dtw_from_distance_matrix
from ortools.sat.python import cp_model
import WordMetrics
from constants import app_logger
offset_blank = 1
TIME_THRESHOLD_MAPPING = 5.0
def get_word_distance_matrix(words_estimated: list, words_real: list) -> np.ndarray:
"""
Calculate the word distance matrix using Levenshtein distance.
Args:
words_estimated (list): List of estimated words.
words_real (list): List of real words.
Returns:
np.ndarray: The word distance matrix.
"""
number_of_real_words = len(words_real)
number_of_estimated_words = len(words_estimated)
word_distance_matrix = np.zeros(
(number_of_estimated_words + offset_blank, number_of_real_words))
for idx_estimated in range(number_of_estimated_words):
for idx_real in range(number_of_real_words):
word_distance_matrix[idx_estimated, idx_real] = WordMetrics.edit_distance_python(
words_estimated[idx_estimated], words_real[idx_real])
if offset_blank == 1:
for idx_real in range(number_of_real_words):
word_distance_matrix[number_of_estimated_words,
idx_real] = len(words_real[idx_real])
return word_distance_matrix
def get_best_path_from_distance_matrix(word_distance_matrix):
"""
Get the best path from the word distance matrix using constraint programming.
Args:
word_distance_matrix (np.ndarray): The word distance matrix.
Returns:
np.ndarray: The best path indices.
"""
modelCpp = cp_model.CpModel()
number_of_real_words = word_distance_matrix.shape[1]
number_of_estimated_words = word_distance_matrix.shape[0] - 1
number_words = np.maximum(number_of_real_words, number_of_estimated_words)
estimated_words_order = [modelCpp.NewIntVar(0, int(
number_words - 1 + offset_blank), 'w%i' % i) for i in range(number_words + offset_blank)]
# They are in ascending order
for word_idx in range(number_words - 1):
modelCpp.Add(
estimated_words_order[word_idx + 1] >= estimated_words_order[word_idx])
total_phoneme_distance = 0
real_word_at_time = {}
for idx_estimated in range(number_of_estimated_words):
for idx_real in range(number_of_real_words):
real_word_at_time[idx_estimated, idx_real] = modelCpp.NewBoolVar(
'real_word_at_time' + str(idx_real) + '-' + str(idx_estimated))
modelCpp.Add(estimated_words_order[idx_estimated] == idx_real).OnlyEnforceIf(
real_word_at_time[idx_estimated, idx_real])
total_phoneme_distance += word_distance_matrix[idx_estimated,
idx_real] * real_word_at_time[idx_estimated, idx_real]
# If no word in time, difference is calculated from empty string
for idx_real in range(number_of_real_words):
word_has_a_match = modelCpp.NewBoolVar(
'word_has_a_match' + str(idx_real))
modelCpp.Add(sum([real_word_at_time[idx_estimated, idx_real] for idx_estimated in range(
number_of_estimated_words)]) == 1).OnlyEnforceIf(word_has_a_match)
total_phoneme_distance += word_distance_matrix[number_of_estimated_words,
idx_real] * word_has_a_match.Not()
# Loss should be minimized
modelCpp.Minimize(total_phoneme_distance)
solver = cp_model.CpSolver()
solver.parameters.max_time_in_seconds = TIME_THRESHOLD_MAPPING
status = solver.Solve(modelCpp)
mapped_indices = []
try:
for word_idx in range(number_words):
mapped_indices.append(
(solver.Value(estimated_words_order[word_idx])))
return np.array(mapped_indices, dtype=int)
except:
return []
def get_resulting_string(mapped_indices: np.ndarray, words_estimated: list, words_real: list) -> Tuple[List, List]:
"""
Get the resulting string and indices from the mapped indices.
Args:
mapped_indices (np.ndarray): The mapped indices.
words_estimated (list): List of estimated words.
words_real (list): List of real words.
Returns:
Tuple[List, List]: The mapped words and their indices.
"""
mapped_words = []
mapped_words_indices = []
WORD_NOT_FOUND_TOKEN = '-'
number_of_real_words = len(words_real)
for word_idx in range(number_of_real_words):
position_of_real_word_indices = np.where(
mapped_indices == word_idx)[0].astype(int)
if len(position_of_real_word_indices) == 0:
mapped_words.append(WORD_NOT_FOUND_TOKEN)
mapped_words_indices.append(-1)
continue
if len(position_of_real_word_indices) == 1:
mapped_words.append(
words_estimated[position_of_real_word_indices[0]])
mapped_words_indices.append(position_of_real_word_indices[0])
continue
# Check which index gives the lowest error
if len(position_of_real_word_indices) > 1:
error = 99999
best_possible_combination = ''
best_possible_idx = -1
for single_word_idx in position_of_real_word_indices:
idx_above_word = single_word_idx >= len(words_estimated)
if idx_above_word:
continue
error_word = WordMetrics.edit_distance_python(
words_estimated[single_word_idx], words_real[word_idx])
if error_word < error:
error = error_word * 1
best_possible_combination = words_estimated[single_word_idx]
best_possible_idx = single_word_idx
mapped_words.append(best_possible_combination)
mapped_words_indices.append(best_possible_idx)
continue
return mapped_words, mapped_words_indices
def get_best_mapped_words(words_estimated: list | str, words_real: list | str, use_dtw:bool = False) -> tuple[list, list]:
"""
Get the best mapped words using either DTW or constraint programming.
Args:
words_estimated (list | str): List of estimated words or a single estimated word.
words_real (list | str): List of real words or a single real word.
use_dtw (bool, optional): Whether to use DTW for mapping. Defaults to False.
Returns:
tuple[list, list]: The mapped words and their indices.
"""
app_logger.info(f"words_estimated: '{words_estimated}', words_real: '{words_real}', use_dtw:{use_dtw}.")
word_distance_matrix = get_word_distance_matrix(
words_estimated, words_real)
app_logger.debug(f"word_distance_matrix: '{word_distance_matrix}'.")
start = time.time()
app_logger.info(f"use_dtw: '{use_dtw}'.")
if use_dtw:
alignment = (dtw_from_distance_matrix(word_distance_matrix.T))
app_logger.debug(f"alignment: '{alignment}'.")
mapped_indices = alignment.get_warping_path()[:len(words_estimated)]
app_logger.debug(f"mapped_indices: '{mapped_indices}'.")
duration_of_mapping = time.time()-start
else:
mapped_indices = get_best_path_from_distance_matrix(word_distance_matrix)
app_logger.debug(f"mapped_indices: '{mapped_indices}'.")
duration_of_mapping = time.time()-start
# In case or-tools doesn't converge, go to a faster, low-quality solution
check_mapped_indices_or_duration = len(mapped_indices) == 0 or duration_of_mapping > TIME_THRESHOLD_MAPPING+0.5
app_logger.info(f"check_mapped_indices_or_duration: '{check_mapped_indices_or_duration}'.")
if check_mapped_indices_or_duration:
#mapped_indices = (dtw_from_distance_matrix(
# word_distance_matrix)).path[:len(words_estimated), 1]
word_distance_matrix_transposed = word_distance_matrix.T
app_logger.debug(f"word_distance_matrix_transposed: '{word_distance_matrix_transposed}'.")
alignment = dtw_from_distance_matrix(word_distance_matrix_transposed)
app_logger.debug(f"check_mapped_indices_or_duration, alignment: '{alignment}'.")
mapped_indices = alignment.get_warping_path()
app_logger.debug(f"check_mapped_indices_or_duration, mapped_indices: '{mapped_indices}'.")
mapped_words, mapped_words_indices = get_resulting_string(mapped_indices, words_estimated, words_real)
app_logger.debug(f"mapped_words: '{mapped_words}', mapped_words_indices: '{mapped_words_indices}', duration_of_mapping:{duration_of_mapping}.")
return mapped_words, mapped_words_indices
## Faster, but not optimal
# def get_best_mapped_words_dtw(words_estimated: list, words_real: list) -> list:
# from dtwalign import dtw_from_distance_matrix
# word_distance_matrix = get_word_distance_matrix(
# words_estimated, words_real)
# mapped_indices = dtw_from_distance_matrix(
# word_distance_matrix).path[:-1, 0]
#
# mapped_words, mapped_words_indices = get_resulting_string(
# mapped_indices, words_estimated, words_real)
# return mapped_words, mapped_words_indices
def getWhichLettersWereTranscribedCorrectly(real_word: str, transcribed_word: list) -> list:
"""
Determine which letters were transcribed correctly.
Args:
real_word (str): The real word.
transcribed_word (str): The transcribed word.
Returns:
list: A list indicating whether each letter was transcribed correctly (1 for correct, 0 for incorrect).
"""
is_leter_correct = [None] * len(real_word)
for idx, letter in enumerate(real_word):
letter = letter.lower()
transcribed_word[idx] = transcribed_word[idx].lower()
if letter == transcribed_word[idx] or letter in punctuation:
is_leter_correct[idx] = 1
else:
is_leter_correct[idx] = 0
return is_leter_correct
# def parseLetterErrorsToHTML(word_real, is_leter_correct):
# word_colored = ''
# correct_color_start = '*'
# correct_color_end = '*'
# wrong_color_start = '-'
# wrong_color_end = '-'
# for idx, letter in enumerate(word_real):
# if is_leter_correct[idx] == 1:
# word_colored += correct_color_start + letter + correct_color_end
# else:
# word_colored += wrong_color_start + letter + wrong_color_end
# return word_colored
|