File size: 5,615 Bytes
85b7206
 
 
 
 
 
 
0700cb3
85b7206
 
 
0700cb3
 
85b7206
 
 
0700cb3
85b7206
 
 
0700cb3
85b7206
 
0700cb3
 
 
 
 
 
 
 
 
85b7206
 
 
 
0700cb3
 
 
 
 
 
 
 
 
85b7206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0700cb3
85b7206
 
 
0700cb3
85b7206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0700cb3
85b7206
 
 
0700cb3
85b7206
0700cb3
85b7206
 
 
 
 
0700cb3
 
85b7206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0700cb3
85b7206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import json
from pathlib import Path

import pandas as pd

import RuleBasedModels
from constants import app_logger
from typing_hints import Category


class TextDataset:
    """Sentences dataset."""
    def __init__(self, table: pd.DataFrame, language: str):
        self.table_dataframe = table
        self.language = language

    def __getitem__(self, idx) -> list[str]:
        line = [self.table_dataframe['sentence'].iloc[idx]]
        return line

    def __len__(self) -> int:
        return len(self.table_dataframe)

    def get_category_from_df(self, category_value:Category) -> pd.DataFrame:
        """Filter the sentence dataframe by category returning

        Args:
            category_value (int): The category value to filter the dataframe.

        Returns:
            pd.DataFrame: The filtered dataframe.
        """
        selector = self.table_dataframe["category"] == category_value
        df_by_category = self.table_dataframe[selector]
        return df_by_category

    def get_random_sample_from_df(self, category_value:Category) -> list[str]:
        """Get a random sentence from the category filtered dataframe.

        Args:
            category_value (int): The category value to filter the dataframe.

        Returns:
            list: A list with the selected sentence.
        """
        app_logger.info(f"language={self.language}, category_value={category_value}.")
        choice = self.table_dataframe.sample(n=1)
        if category_value !=0:
            df_language_filtered_by_category = self.get_category_from_df(category_value)
            choice = df_language_filtered_by_category.sample(n=1)
        sentence = choice["sentence"].iloc[0]
        app_logger.info(f"sentence={sentence} ...")
        return [sentence]


sample_folder = Path(__file__).parent / "databases"
lambda_database = {}
lambda_ipa_converter = {}
available_languages = ['de', 'en']

for lang in available_languages:
    # avoid using ";" or "," as separator because these are present within the dataframe sentences
    df = pd.read_csv(sample_folder / f'data_{lang}.csv', delimiter='|')
    lambda_database[lang] = TextDataset(df, lang)
    lambda_ipa_converter[lang] = RuleBasedModels.get_phonem_converter(lang)

lambda_translate_new_sample = False


def lambda_handler(event: dict[str], context) -> str:
    """
    lambda handler to return a random text sample from the dataset.

    Args:
        event (dict): The event data passed to the Lambda function.
        context (dict): The context in which the Lambda function is called.

    Returns:
        str: The JSON-encoded result.
    """
    try:
        body = json.loads(event['body'])

        try:
            category = int(body['category'])
        except KeyError:
            category = 0
        language = body['language']
        try:
            current_transcript = str(body["transcript"])
        except KeyError:
            current_transcript = get_random_selection(language, category)
        current_ipa = lambda_ipa_converter[language].convertToPhonem(current_transcript)

        app_logger.info(f"real_transcript='{current_transcript}', ipa_transcript='{current_ipa}'.")
        result = {
            'real_transcript': [current_transcript],
            'ipa_transcript': current_ipa,
            'transcript_translation': ""
        }

        return json.dumps(result)
    except Exception as ex:
        app_logger.error(f"ex: {ex} ...")
        raise ex


def get_random_selection(language: str, category_value: Category) -> str:
    """
    Get a random text sample from the dataset.

    Args:
        language (str): The language code.
        category_value (int): The category value to filter the dataset.

    Returns:
        str: The selected text sample.
    """
    lambda_df_lang = lambda_database[language]
    current_transcript = lambda_df_lang.get_random_sample_from_df(category_value)
    app_logger.info(f"category_value={category_value}, language={language}, current_transcript={current_transcript}.")
    return current_transcript[0]


def getSentenceCategory(sentence) -> int | None:
    number_of_words = len(sentence.split())
    categories_word_limits = [0, 8, 20, 100000]
    for category in range(len(categories_word_limits)-1):
        if categories_word_limits[category] < number_of_words <= categories_word_limits[category + 1]:
            return category+1
    raise ValueError(f"category not assigned for sentence '{sentence}' ...")


def get_enriched_dataframe_csv(
        language: str,
        custom_dataframe_csv_filename_no_ext: str = "data",
        custom_folder: Path = sample_folder
) -> None:
    """
    Read a csv dataframe adding a 'category' column.

    Args:
        language (str): The language code (e.g. "de" for German).
        custom_dataframe_csv_filename_no_ext (str): The csv dataframe without extension.
        custom_folder (Path): The folder containing the csv dataframe.

    Returns:
        None
    """
    custom_folder = Path(custom_folder).absolute()
    df_filename = custom_folder / f'{custom_dataframe_csv_filename_no_ext}_{language}.csv'
    with open(df_filename, 'r') as handle:
        df2 = pd.read_csv(handle, sep="|")
        df2["category"] = df2["sentence"].apply(getSentenceCategory)
        app_logger.info("de_category added")
    output_path = custom_folder / f'{custom_dataframe_csv_filename_no_ext}_{language}.csv'
    df2.to_csv(output_path, index=False, sep="|")
    app_logger.info(f"written {output_path} ...")


if __name__ == '__main__':
    get_enriched_dataframe_csv("de")
    get_enriched_dataframe_csv("en")