Spaces:
Running
Running
File size: 18,326 Bytes
74a35d9 28d0c5f d804881 5abbb8c 28d0c5f 2f5403b 74a35d9 28d0c5f 74a35d9 28d0c5f 85b7206 74a35d9 28d0c5f 85b7206 28d0c5f 0700cb3 85b7206 0700cb3 85b7206 0700cb3 85b7206 28d0c5f 85b7206 1985a38 85b7206 28d0c5f 85b7206 2f5403b 9ab32d7 d804881 28d0c5f 85b7206 2f5403b 85b7206 0700cb3 85b7206 d6917a8 d804881 e272322 1d0bb75 e272322 5abbb8c d804881 d009a59 d804881 85b7206 d804881 28d0c5f 85b7206 d6917a8 d009a59 d6917a8 85b7206 28d0c5f 5abbb8c d009a59 5abbb8c d009a59 28d0c5f 74a35d9 d009a59 28d0c5f 0b0c1a6 b5c05cd d009a59 0b0c1a6 28d0c5f 85b7206 28d0c5f 85b7206 28d0c5f 74a35d9 5abbb8c ca7e6be 9ab32d7 28d0c5f d009a59 85b7206 d009a59 85b7206 d009a59 28d0c5f 9ab32d7 85b7206 0700cb3 85b7206 9ab32d7 2f5403b 9ab32d7 d009a59 bd49a31 85b7206 bd49a31 dc92d10 85b7206 d009a59 0700cb3 85b7206 d009a59 85b7206 d009a59 85b7206 0700cb3 85b7206 918182d bd49a31 918182d bd49a31 d009a59 1d0bb75 85b7206 0700cb3 85b7206 d009a59 bd49a31 85b7206 d009a59 85b7206 d009a59 bd49a31 d009a59 0c5bb13 85b7206 0700cb3 85b7206 d009a59 85b7206 d009a59 28d0c5f 5abbb8c 28d0c5f 85b7206 0700cb3 85b7206 5abbb8c 28d0c5f 85b7206 0700cb3 85b7206 d6917a8 85b7206 28d0c5f 85b7206 0700cb3 85b7206 28d0c5f 5abbb8c 28d0c5f 5abbb8c 28d0c5f 5abbb8c 28d0c5f 5abbb8c 28d0c5f 85b7206 28d0c5f d009a59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import base64
import json
from pathlib import Path
import tempfile
import time
from typing import Dict, Any
try:
from typing import LiteralString
except ImportError:
from typing_extensions import LiteralString
import audioread
import numpy as np
import torch
from torchaudio.transforms import Resample
import WordMatching as wm
import pronunciationTrainer
import utilsFileIO
from constants import app_logger, sample_rate_resample, sample_rate_start, USE_DTW, IS_TESTING, tmp_audio_extension
trainer_SST_lambda = {'de': pronunciationTrainer.getTrainer("de"), 'en': pronunciationTrainer.getTrainer("en")}
transform = Resample(orig_freq=sample_rate_start, new_freq=sample_rate_resample)
def lambda_handler(event: dict[str], context: Any) -> str:
"""
Lambda handler for speech-to-score.
Args:
event (Dict[str, Any]): The event data containing the request body.
context (Any): The context in which the lambda function is executed.
Returns:
str: The json response containing the speech-to-score results.
"""
body = event['body']
data = json.loads(body)
real_text = data['title']
base64_audio = data["base64Audio"]
app_logger.debug(f"base64Audio:{base64_audio} ...")
file_bytes_or_audiotmpfile = base64.b64decode(base64_audio[22:].encode('utf-8'))
language = data['language']
try:
use_dtw = data["useDTW"]
app_logger.info(f'use_dtw: "{type(use_dtw)}", "{use_dtw}".')
except KeyError:
use_dtw = USE_DTW
if len(real_text) == 0:
return utilsFileIO.return_response_ok('{}')
output = get_speech_to_score_dict(
real_text=real_text, file_bytes_or_audiotmpfile=file_bytes_or_audiotmpfile, language=language, use_dtw=use_dtw
)
pronunciation_accuracy = int(output["pronunciation_accuracy"])
output["pronunciation_accuracy"] = f"{pronunciation_accuracy}"
output = json.dumps(output)
app_logger.debug(f"output: {output} ...")
return output
def get_speech_to_score_dict(
real_text: str, file_bytes_or_audiotmpfile: str | bytes | dict, language: str = "en", extension: str = tmp_audio_extension, use_dtw: bool = False
) -> Dict[str | Any, float | LiteralString | str | Any]:
"""
Process the audio file and return a dictionary with speech-to-score results.
Args:
use_dtw:
real_text (str): The text to be matched with the audio.
file_bytes_or_audiotmpfile (str | bytes | dict): The audio file in bytes or a temporary file.
language (str): The language of the audio.
extension (str): The file extension of the audio file.
Returns:
Dict[str | Any, float | LiteralString | str | Any]: The speech-to-score results.
"""
from soundfile import LibsndfileError
app_logger.info(f"real_text:{real_text} ...")
app_logger.debug(f"file_bytes:{file_bytes_or_audiotmpfile} ...")
app_logger.info(f"language:{language} ...")
if real_text is None or len(real_text) == 0:
raise ValueError(f"cannot read an empty/None text: '{real_text}'...")
if language is None or len(language) == 0:
raise NotImplementedError(f"Not tested/supported with '{language}' language...")
if file_bytes_or_audiotmpfile is None or len(file_bytes_or_audiotmpfile) == 0:
raise OSError(f"cannot read an empty/None file: '{file_bytes_or_audiotmpfile}'...")
if not isinstance(file_bytes_or_audiotmpfile, (bytes, bytearray)) and Path(file_bytes_or_audiotmpfile).exists() and Path(file_bytes_or_audiotmpfile).stat().st_size == 0:
raise OSError(f"cannot read an empty file: '{file_bytes_or_audiotmpfile}'...")
start0 = time.time()
random_file_name = file_bytes_or_audiotmpfile
app_logger.debug(f"random_file_name:{random_file_name} ...")
if isinstance(file_bytes_or_audiotmpfile, (bytes, bytearray)):
app_logger.debug("writing streaming data to file on disk...")
with tempfile.NamedTemporaryFile(prefix="temp_sound_speech_score_", suffix=extension, delete=False) as f1:
f1.write(file_bytes_or_audiotmpfile)
random_file_name = f1.name
duration = time.time() - start0
app_logger.info(f'Saved binary data in file in {duration}s.')
start = time.time()
app_logger.info(f"Loading temp '{random_file_name}' file...")
try:
signal, samplerate = soundfile_load(random_file_name)
except LibsndfileError as sfe:
# https://github.com/beetbox/audioread/issues/144
# deprecation warnings => pip install standard-aifc standard-sunau
app_logger.error(f"Error reading file {random_file_name}: {sfe}, re-try with audioread...")
signal, samplerate = audioread_load(random_file_name)
duration = time.time() - start
app_logger.info(f'Read {extension} file {random_file_name} in {duration}s.')
signal_transformed = transform(torch.Tensor(signal)).unsqueeze(0)
duration = time.time() - start
app_logger.info(f'Loaded {extension} file {random_file_name} in {duration}s.')
language_trainer_sst_lambda = trainer_SST_lambda[language]
app_logger.info('language_trainer_sst_lambda: preparing...')
result = language_trainer_sst_lambda.processAudioForGivenText(signal_transformed, real_text)
app_logger.info(f'language_trainer_sst_lambda: result: {result}...')
# start = time.time()
# if remove_random_file:
# os.remove(random_file_name)
# duration = time.time() - start
# app_logger.info(f'Deleted file {random_file_name} in {duration}s.')
start = time.time()
real_transcripts_ipa = ' '.join(
[word[0] for word in result['real_and_transcribed_words_ipa']])
matched_transcripts_ipa = ' '.join(
[word[1] for word in result['real_and_transcribed_words_ipa']])
real_transcripts = ' '.join(
[word[0] for word in result['real_and_transcribed_words']])
matched_transcripts = ' '.join(
[word[1] for word in result['real_and_transcribed_words']])
words_real = real_transcripts.lower().split()
mapped_words = matched_transcripts.split()
is_letter_correct_all_words = ''
for idx, word_real in enumerate(words_real):
mapped_letters, mapped_letters_indices = wm.get_best_mapped_words(
mapped_words[idx], word_real, use_dtw=use_dtw)
is_letter_correct = wm.getWhichLettersWereTranscribedCorrectly(
word_real, mapped_letters) # , mapped_letters_indices)
is_letter_correct_all_words += ''.join([str(is_correct)
for is_correct in is_letter_correct]) + ' '
pair_accuracy_category = ' '.join(
[str(category) for category in result['pronunciation_categories']])
duration = time.time() - start
duration_tot = time.time() - start0
app_logger.info(f'Time to post-process results: {duration}, tot_duration:{duration_tot}.')
pronunciation_accuracy = float(result['pronunciation_accuracy'])
ipa_transcript = result['recording_ipa']
return {
'real_transcript': result['recording_transcript'],
'ipa_transcript': ipa_transcript,
'pronunciation_accuracy': pronunciation_accuracy,
'real_transcripts': real_transcripts, 'matched_transcripts': matched_transcripts,
'real_transcripts_ipa': real_transcripts_ipa, 'matched_transcripts_ipa': matched_transcripts_ipa,
'pair_accuracy_category': pair_accuracy_category,
'start_time': result['start_time'],
'end_time': result['end_time'],
'is_letter_correct_all_words': is_letter_correct_all_words,
"random_file_name": random_file_name
}
def get_speech_to_score_tuple(real_text: str, file_bytes_or_audiotmpfile: str | dict, language: str = "en", remove_random_file: bool = True) -> tuple:
"""
Process the audio file and return a tuple with speech-to-score results.
Args:
real_text (str): The text to be matched with the audio.
file_bytes_or_audiotmpfile (str | dict): The audio file in bytes or a temporary file.
language (str): The language of the audio.
remove_random_file (bool): Whether to remove the temporary file after processing.
Returns:
tuple: A tuple containing real transcripts, letter correctness, pronunciation accuracy, IPA transcript, real transcripts in IPA, number of words, first audio file, and JSON output.
"""
output = get_speech_to_score_dict(
real_text=real_text, file_bytes_or_audiotmpfile=file_bytes_or_audiotmpfile,
language=language
)
random_file_name = output["random_file_name"]
del output["random_file_name"]
real_transcripts = output['real_transcripts']
is_letter_correct_all_words = output['is_letter_correct_all_words']
pronunciation_accuracy = output['pronunciation_accuracy']
output["pronunciation_accuracy"] = f"{pronunciation_accuracy:.2f}"
ipa_transcript = output['ipa_transcript']
real_transcripts_ipa = output['real_transcripts_ipa']
end_time = [float(x) for x in output['end_time'].split(" ")]
start_time = [float(x) for x in output['start_time'].split(" ")]
num_words = len(end_time)
app_logger.debug(f"start splitting recorded audio into {num_words} words...")
audio_files, audio_durations = get_splitted_audio_file(audiotmpfile=file_bytes_or_audiotmpfile, start_time=start_time, end_time=end_time)
remove_random_file = not IS_TESTING and remove_random_file
if remove_random_file:
app_logger.info(f"{IS_TESTING} => remove_random_file:{remove_random_file}, removing:{random_file_name} ...")
Path(random_file_name).unlink(missing_ok=True)
app_logger.info(f"removed:{random_file_name} ...")
output = {'audio_files': audio_files, "audio_durations": audio_durations, **output}
first_audio_file = audio_files[0]
return real_transcripts, is_letter_correct_all_words, pronunciation_accuracy, ipa_transcript, real_transcripts_ipa, num_words, first_audio_file, json.dumps(output), random_file_name
def soundfile_write(audiofile: str | Path, data: np.ndarray, samplerate: int) -> None:
"""
Write audio data to a file using soundfile.
Args:
audiofile (str | Path): The path to the audio file.
data (np.ndarray): The audio data to write.
samplerate (int): The sample rate of the audio data.
Returns:
None
"""
import soundfile as sf
sf.write(audiofile, data, samplerate)
def get_selected_word(idx_recorded_word: int, raw_json_output: str) -> tuple[str, str, float]:
"""
Get the selected word, its audio file, and duration from the recognition output.
Args:
idx_recorded_word (int): The index of the recorded word.
raw_json_output (str): The JSON output from the recognition process.
Returns:
tuple: A tuple containing the audio file, the current word, and its duration.
"""
recognition_output = json.loads(raw_json_output)
list_audio_files = recognition_output["audio_files"]
real_transcripts = recognition_output["real_transcripts"]
audio_durations = recognition_output["audio_durations"]
real_transcripts_list = real_transcripts.split()
app_logger.info(f"idx_recorded_word:{idx_recorded_word} ...")
current_word = real_transcripts_list[idx_recorded_word]
app_logger.info(f"current word:{current_word} ...")
current_duration = audio_durations[idx_recorded_word]
app_logger.info(f"current_duration:{current_duration} ...")
return list_audio_files[idx_recorded_word], current_word, current_duration
def get_splitted_audio_file(audiotmpfile: str | Path, start_time: list[float], end_time: list[float]) -> tuple[list[str], list[float]]:
"""
Split the audio file into segments based on start and end times.
Args:
audiotmpfile (str | Path): The path to the audio file.
start_time (list[float]): The start times of the segments.
end_time (list[float]): The end times of the segments.
Returns:
tuple: A tuple containing a list of audio files and their durations.
"""
import soundfile as sf
audio_files = []
audio_durations = []
app_logger.info(f"start_time:{start_time}, end_time:{end_time} ...")
for n, (start_nth, end_nth) in enumerate(zip(start_time, end_time)):
# assert start_nth < end_nth, f"start_nth:{start_nth} (index {n}) should be less than end_nth:{end_nth} (start_time:{start_time}, end_time:{end_time})..."
signal_nth, samplerate = soundfile_load(audiotmpfile, offset=start_nth, duration=end_nth - start_nth)
audiofile = get_file_with_custom_suffix(audiotmpfile, f"_part{n}_start{start_nth}_end{end_nth}")
soundfile_write(audiofile=audiofile, data=signal_nth, samplerate=samplerate)
app_logger.info(f"audio file {audiofile} written...")
audio_files.append(str(audiofile))
duration = end_nth - start_nth
app_logger.info(f"audio file {audiofile} has duration {duration}...")
audio_durations.append(duration)
return audio_files, audio_durations
def get_file_with_custom_suffix(basefile: str | Path, custom_suffix: str) -> Path:
"""
Generate a file path with a custom suffix.
Args:
basefile (str | Path): The base file path.
custom_suffix (str): The custom suffix to add to the file name.
Returns:
Path: The new file path with the custom suffix.
"""
pathname = Path(basefile)
dirname, filename_no_ext, filename_ext = pathname.parent, pathname.stem, pathname.suffix
output_file = dirname / f"{filename_no_ext}_{custom_suffix}.{filename_ext}"
return output_file
# From Librosa
def calc_start_end(sr_native: int, time_position: float, n_channels: int) -> int:
"""
Calculate the start or end position in samples.
Args:
sr_native (int): The native sample rate.
time_position (float): The time position in seconds.
n_channels (int): The number of audio channels.
Returns:
int: The start or end position in samples.
"""
return int(np.round(sr_native * time_position)) * n_channels
def soundfile_load(path: str | Path, offset: float = 0.0, duration: float = None, dtype=np.float32) -> tuple[np.ndarray, int]:
"""
Load an audio buffer using soundfile.
Args:
path (str | Path): The path to the audio file.
offset (float): The offset in seconds to start reading the file.
duration (float): The duration in seconds to read from the file.
dtype (np.float32): The data type of the audio buffer.
Returns:
tuple: A tuple containing the audio buffer and the sample rate.
"""
import soundfile as sf
if isinstance(path, sf.SoundFile):
# If the user passed an existing soundfile object,
# we can use it directly
context = path
else:
# Otherwise, create the soundfile object
context = sf.SoundFile(path)
with context as sf_desc:
sr_native = sf_desc.samplerate
if offset:
# Seek to the start of the target read
sf_desc.seek(int(offset * sr_native))
if duration is not None:
frame_duration = int(duration * sr_native)
else:
frame_duration = -1
# Load the target number of frames, and transpose to match librosa form
y = sf_desc.read(frames=frame_duration, dtype=dtype, always_2d=False).T
return y, sr_native
def audioread_load(path: str | Path, offset: float = 0.0, duration: float = None, dtype=np.float32) -> tuple[np.ndarray, int]:
"""
This loads one block at a time, and then concatenates the results.
Args:
path (str | Path): The path to the audio file.
offset (float): The offset in seconds to start reading the file.
duration (float): The duration in seconds to read from the file.
dtype (np.float32): The data type of the audio buffer.
Returns:
tuple: A tuple containing the audio buffer and the sample rate.
"""
y = []
app_logger.debug(f"reading audio file at path:{path} ...")
with audioread.audio_open(path) as input_file:
sr_native = input_file.samplerate
n_channels = input_file.channels
s_start = calc_start_end(sr_native, offset, n_channels)
if duration is None:
s_end = np.inf
else:
duration = calc_start_end(sr_native, duration, n_channels)
s_end = duration + s_start
n = 0
for frame in input_file:
frame = buf_to_float(frame, dtype=dtype)
n_prev = n
n = n + len(frame)
if n < s_start:
# offset is after the current frame
# keep reading
continue
if s_end < n_prev:
# we're off the end. stop reading
break
if s_end < n:
# the end is in this frame. crop.
frame = frame[: s_end - n_prev]
if n_prev <= s_start <= n:
# beginning is in this frame
frame = frame[(s_start - n_prev):]
# tack on the current frame
y.append(frame)
if y:
y = np.concatenate(y)
if n_channels > 1:
y = y.reshape((-1, n_channels)).T
else:
y = np.empty(0, dtype=dtype)
return y, sr_native
# From Librosa
def buf_to_float(x: np.ndarray, n_bytes: int = 2, dtype: np.float32 = np.float32) -> np.ndarray:
"""Convert an integer buffer to floating point values.
This is primarily useful when loading integer-valued wav data
into numpy arrays.
Parameters
----------
x : np.ndarray [dtype=int]
The integer-valued data buffer
n_bytes : int [1, 2, 4]
The number of bytes per sample in ``x``
dtype : numeric type
The target output type (default: 32-bit float)
Returns
-------
x_float : np.ndarray [dtype=float]
The input data buffer cast to floating point
"""
# Invert the scale of the data
scale = 1.0 / float(1 << ((8 * n_bytes) - 1))
# Construct the format string
fmt = "<i{:d}".format(n_bytes)
# Rescale and format the data buffer
return scale * np.frombuffer(x, fmt).astype(dtype)
|