File size: 2,058 Bytes
85b7206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import base64
import json
import os
import tempfile
from pathlib import Path

import soundfile as sf

import AIModels
import models
import utilsFileIO
from constants import app_logger, sample_rate_resample


def get_tts(text: str, language: str, tmp_prefix="audio_", tmp_suffix=".wav") -> str:
    """
    Generate text-to-speech (TTS) audio for the given text and language.

    Args:
        text (str): The text to be converted to speech.
        language (str): The language of the text. Supported languages are "en" (English) and "de" (German).
        tmp_prefix (str, optional): The temporary directory to use for temporary files.
        tmp_suffix (str, optional): The temporary directory to use for temporary files.

    Returns:
        str: The path to the generated audio file.

    Raises:
        NotImplementedError: If the provided language is not supported.

    Notes:
        This function uses the Silero TTS model to generate the audio. The model and speaker are selected based on the provided language.
    """

    if text is None or len(text) == 0:
        raise ValueError(f"cannot read an empty/None text: '{text}'...")
    if language is None or len(language) == 0:
        raise NotImplementedError(f"Not tested/supported with '{language}' language...")

    tmp_dir = Path(tempfile.gettempdir())
    try:
        model, _, speaker, sample_rate = models.__silero_tts(
            language, output_folder=tmp_dir
        )
    except ValueError:
        model, _, sample_rate, _, _, speaker = models.__silero_tts(
            language, output_folder=tmp_dir
        )
    app_logger.info(f"model speaker #0: {speaker} ...")

    with tempfile.NamedTemporaryFile(prefix=tmp_prefix, suffix=tmp_suffix, delete=False) as tmp_audio_file:
        app_logger.info(f"tmp_audio_file output: {tmp_audio_file.name} ...")
        audio_paths = model.save_wav(text=text, speaker=speaker, sample_rate=sample_rate, audio_path=str(tmp_audio_file.name))
        app_logger.info(f"audio_paths output: {audio_paths} ...")
        return audio_paths