Spaces:
Running
Running
File size: 13,003 Bytes
85b7206 0700cb3 85b7206 0700cb3 85b7206 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import os
from pathlib import Path
from typing import Union, Callable
import torch
import torch.nn as nn
from omegaconf import DictConfig, ListConfig
from silero.utils import Decoder
from AIModels import NeuralASR
from ModelInterfaces import IASRModel
from constants import MODEL_NAME_DEFAULT, language_not_implemented, app_logger, sample_rate_start, silero_versions_dict
default_speaker_dict = {
"de": {"speaker": "karlsson", "model_id": "v3_de", "sample_rate": sample_rate_start},
"en": {"speaker": "en_0", "model_id": "v3_en", "sample_rate": sample_rate_start},
}
def getASRModel(language: str, model_name: str = MODEL_NAME_DEFAULT) -> IASRModel:
"""Wrapper function to get the ASR model based on the model name and language.
Currently supported models are 'whisper', 'faster_whisper', and 'silero'.
Args:
language: str: The language of the model.
model_name: str: The name of the model to use. Default is 'whisper'.
Returns:
IASRModel: The ASR model instance.
"""
models_dict = {
"whisper": __get_model_whisper,
"faster_whisper": __get_model_faster_whisper,
"silero": __get_model_silero
}
if model_name in models_dict:
fn = models_dict[model_name]
return fn(language)
models_supported = ", ".join(models_dict.keys())
raise ValueError(f"Model '{model_name}' not implemented. Supported models: {models_supported}.")
def __get_model_whisper(language: str) -> IASRModel:
from whisper_wrapper import WhisperASRModel
return WhisperASRModel(language=language)
def __get_model_faster_whisper(language: str) -> IASRModel:
from faster_whisper_wrapper import FasterWhisperASRModel
return FasterWhisperASRModel(language=language)
def __get_model_silero(language: str) -> IASRModel:
import tempfile
tmp_dir = tempfile.gettempdir()
if language == "de":
model, decoder, _ = __silero_stt(
language="de", version="v4", jit_model="jit_large", output_folder=tmp_dir
)
return __eval_apply_neural_asr(model, decoder, language)
elif language == "en":
model, decoder, _ = __silero_stt(language="en", output_folder=tmp_dir)
return __eval_apply_neural_asr(model, decoder, language)
raise ValueError(language_not_implemented.format(language))
def __eval_apply_neural_asr(model: nn.Module, decoder: Decoder, language: str):
app_logger.info(f"LOADED silero model language: {language}, version: '{silero_versions_dict[language]}'")
model.eval()
app_logger.info(f"EVALUATED silero model language: {language}, version: '{silero_versions_dict[language]}'")
return NeuralASR(model, decoder)
def getTranslationModel(language: str) -> nn.Module:
"""Wrapper function to get the translation model based on the language."""
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
if language == 'de':
model = AutoModelForSeq2SeqLM.from_pretrained(
"Helsinki-NLP/opus-mt-de-en")
tokenizer = AutoTokenizer.from_pretrained(
"Helsinki-NLP/opus-mt-de-en")
# Cache models to avoid Hugging face processing (not needed now)
# with open('translation_model_de.pickle', 'wb') as handle:
# pickle.dump(model, handle)
# with open('translation_tokenizer_de.pickle', 'wb') as handle:
# pickle.dump(tokenizer, handle)
else:
raise ValueError(language_not_implemented.format(language))
return model, tokenizer
def __silero_tts(language: str = "en", version: str = "latest", output_folder: Path | str = None, **kwargs) -> tuple[nn.Module, str, int, str, dict, Callable, str]:
"""
Modified function to create instances of Silero Text-To-Speech Models.
Please see https://github.com/snakers4/silero-models?tab=readme-ov-file#text-to-speech for usage examples.
language="en", version="latest", output_folder: Path | str = None, **kwargs
Args:
language (str): Language of the model. Available options are ['ru', 'en', 'de', 'es', 'fr']. Default is 'en'.
version (str): Version of the model to use. Default is 'latest'.
output_folder (Path | str): Path to the folder where the model will be saved. Default is None.
**kwargs: Additional keyword arguments.
Returns:
tuple: Depending on the model version and the input arguments, returns a tuple containing:
- model: The loaded TTS model.
- symbols (str): The set of symbols used by the model (only for older model versions).
- sample_rate (int): The sample rate of the model.
- example_text (str): Example text for the model.
- speaker (dict):
- apply_tts (function): Function to apply TTS (only for older model versions).
- model_id (str): The model ID (only for older model versions).
Raises:
AssertionError: If the specified language is not in the supported list.
"""
output_folder = Path(output_folder)
current_model_lang = default_speaker_dict[language]
app_logger.info(f"model speaker current_model_lang: {current_model_lang} ...")
if language in default_speaker_dict:
model_id = current_model_lang["model_id"]
models = __get_models(language, output_folder, version, model_type="tts_models")
available_languages = list(models.tts_models.keys())
assert (
language in available_languages
), f"Language not in the supported list {available_languages}"
tts_models_lang = models.tts_models[language]
model_conf = tts_models_lang[model_id]
model_conf_latest = model_conf[version]
app_logger.info(f"model_conf: {model_conf_latest} ...")
if "_v2" in model_id or "_v3" in model_id or "v3_" in model_id or "v4_" in model_id:
from torch import package
model_url = model_conf_latest.package
model_dir = output_folder / "model"
os.makedirs(model_dir, exist_ok=True)
model_path = output_folder / os.path.basename(model_url)
if not os.path.isfile(model_path):
torch.hub.download_url_to_file(model_url, model_path, progress=True)
imp = package.PackageImporter(model_path)
model = imp.load_pickle("tts_models", "model")
app_logger.info(
f"current model_conf_latest.sample_rate:{model_conf_latest.sample_rate} ..."
)
sample_rate = current_model_lang["sample_rate"]
return (
model,
model_conf_latest.example,
current_model_lang["speaker"],
sample_rate,
)
else:
from silero.tts_utils import apply_tts, init_jit_model as init_jit_model_tts
model = init_jit_model_tts(model_conf_latest.jit)
symbols = model_conf_latest.tokenset
example_text = model_conf_latest.example
sample_rate = model_conf_latest.sample_rate
return model, symbols, sample_rate, example_text, apply_tts, model_id
def __get_models(language: str, output_folder: str | Path, version: str, model_type: str) -> Union[DictConfig, ListConfig]:
"""
Retrieve and load the model configuration for a specified language and model type.
Args:
language (str): The language for which the model is required.
output_folder (str or Path): The folder where the model configuration file should be saved
version (str): The version of the model.
model_type (str): The type of the model.
Returns:
OmegaConf: The loaded model configuration.
Raises:
AssertionError: If the model configuration file does not exist after attempting to download it.
Notes:
If the model configuration file does not exist in the specified output folder, it will be downloaded
from a predefined URL and saved in the output folder.
"""
from omegaconf import OmegaConf
output_folder = (
Path(output_folder)
if output_folder is not None
else Path(os.path.dirname(__file__)).parent.parent
)
models_list_file = output_folder / f"latest_silero_model_{language}.yml"
app_logger.info(f"models_list_file:{models_list_file}.")
if not os.path.exists(models_list_file):
app_logger.info(
f"model {model_type} yml for '{language}' language, '{version}' version not found, download it in folder {output_folder}..."
)
torch.hub.download_url_to_file(
"https://raw.githubusercontent.com/snakers4/silero-models/master/models.yml",
str(models_list_file),
progress=False,
)
assert os.path.exists(models_list_file)
return OmegaConf.load(models_list_file)
def __get_latest_stt_model(language: str, output_folder: str | Path, version: str, model_type: str, jit_model: str, **kwargs) -> tuple[nn.Module, Decoder]:
"""
Retrieve the latest Speech-to-Text (STT) model for a given language and model type.
Args:
language (str): The language for which the STT model is required.
output_folder (str): The directory where the model will be saved.
version (str): The version of the model to retrieve.
model_type (str): The type of the model (e.g., 'large', 'small').
jit_model (str): The specific JIT model to use.
**kwargs: Additional keyword arguments to pass to the model initialization function.
Returns:
tuple: A tuple containing the model and the decoder.
Raises:
AssertionError: If the specified language is not available in the model type.
"""
models = __get_models(language, output_folder, version, model_type)
available_languages = list(models[model_type].keys())
assert language in available_languages
model, decoder = init_jit_model(
model_url=models[model_type].get(language).get(version).get(jit_model),
output_folder=output_folder,
**kwargs,
)
return model, decoder
def init_jit_model(
model_url: str,
device: torch.device = torch.device("cpu"),
output_folder: Path | str = None,
) -> tuple[torch.nn.Module, Decoder]:
"""
Initialize a JIT model from a given URL.
Args:
model_url (str): The URL to download the model from.
device (torch.device, optional): The device to load the model on. Defaults to CPU.
output_folder (Path | str, optional): The folder to save the downloaded model.
If None, defaults to a 'model' directory in the current file's directory.
Returns:
Tuple[torch.jit.ScriptModule, Decoder]: The loaded JIT model and its corresponding decoder.
"""
torch.set_grad_enabled(False)
app_logger.info(
f"model output_folder exists? '{output_folder is None}' => '{output_folder}' ..."
)
model_dir = (
Path(output_folder)
if output_folder is not None
else Path(torch.hub.get_dir())
)
os.makedirs(model_dir, exist_ok=True)
app_logger.info(f"downloading the models to model_dir: '{model_dir}' ...")
model_path = model_dir / os.path.basename(model_url)
app_logger.info(
f"model_path exists? '{os.path.isfile(model_path)}' => '{model_path}' ..."
)
if not os.path.isfile(model_path):
app_logger.info(f"downloading model_path: '{model_path}' ...")
torch.hub.download_url_to_file(model_url, str(model_path), progress=True)
app_logger.info(f"model_path {model_path} downloaded!")
model = torch.jit.load(model_path, map_location=device)
model.eval()
return model, Decoder(model.labels)
def __silero_stt(
language: str = "en",
version: str = "latest",
jit_model: str = "jit",
output_folder: Path | str = None,
**kwargs,
) -> tuple[nn.Module, Decoder, set[Callable, Callable, Callable, Callable]]:
"""
Modified function to create instances of Silero Speech-To-Text Model(s).
Please see https://github.com/snakers4/silero-models?tab=readme-ov-file#speech-to-text for usage examples.
Args:
language (str): Language of the model. Available options are ['en', 'de', 'es'].
version (str): Version of the model to use. Default is "latest".
jit_model (str): Type of JIT model to use. Default is "jit".
output_folder (Path | str, optional): Output folder needed in case of docker build. Default is None.
**kwargs: Additional keyword arguments.
Returns:
tuple: A tuple containing the model, decoder object, and a set of utility functions.
"""
from silero.utils import (
read_audio,
read_batch,
split_into_batches,
prepare_model_input,
)
model, decoder = __get_latest_stt_model(
language,
output_folder,
version,
model_type="stt_models",
jit_model=jit_model,
**kwargs,
)
utils = (read_batch, split_into_batches, read_audio, prepare_model_input)
return model, decoder, utils
|