Spaces:
Running
Running
import numpy as np | |
# ref from https://gitlab.com/-/snippets/1948157 | |
# For some variants, look here https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python | |
# Pure/numpy python | |
def edit_distance_python2(a: str, b: str) -> np.ndarray | int: | |
"""A pure python levenshtein distance implementation""" | |
# This version is commutative, so as an optimization we force |a|>=|b| | |
if len(a) < len(b): | |
return edit_distance_python(b, a) | |
if len(b) == 0: # Can deal with empty sequences faster | |
return len(a) | |
# Only two rows are really needed: the one currently filled in, and the previous | |
distances = [] | |
distances.append([i for i in range(len(b) + 1)]) | |
distances.append([0 for _ in range(len(b) + 1)]) | |
# We can prefill the first row: | |
costs = [0 for _ in range(3)] | |
for i, a_token in enumerate(a, start=1): | |
distances[1][0] += 1 # Deals with the first column. | |
for j, b_token in enumerate(b, start=1): | |
costs[0] = distances[1][j - 1] + 1 | |
costs[1] = distances[0][j] + 1 | |
costs[2] = distances[0][j - 1] + (0 if a_token == b_token else 1) | |
distances[1][j] = min(costs) | |
# Move to the next row: | |
distances[0][:] = distances[1][:] | |
return distances[1][len(b)] | |
#https://stackabuse.com/levenshtein-distance-and-text-similarity-in-python/ | |
def edit_distance_python(seq1: str, seq2: str) -> np.ndarray: | |
"""A levenshtein distance implementation. | |
Args: | |
seq1 (str): First sequence. | |
seq2 (str): Second sequence. | |
Returns: | |
np.ndarray: The levenshtein distance between the two sequences. | |
""" | |
size_x = len(seq1) + 1 | |
size_y = len(seq2) + 1 | |
matrix = np.zeros((size_x, size_y)) | |
for x in range(size_x): | |
matrix[x, 0] = x | |
for y in range(size_y): | |
matrix[0, y] = y | |
for x in range(1, size_x): | |
for y in range(1, size_y): | |
if seq1[x - 1] == seq2[y - 1]: | |
matrix[x, y] = min( | |
matrix[x - 1, y] + 1, | |
matrix[x - 1, y - 1], | |
matrix[x, y - 1] + 1 | |
) | |
else: | |
matrix[x, y] = min( | |
matrix[x - 1, y] + 1, | |
matrix[x - 1, y - 1] + 1, | |
matrix[x, y - 1] + 1 | |
) | |
#print (matrix) | |
return matrix[size_x - 1, size_y - 1] | |