Spaces:
Runtime error
Runtime error
File size: 12,014 Bytes
b3509ba a69441c b3509ba a69441c b3509ba a69441c b3509ba a69441c b3426f6 591bf90 b3426f6 591bf90 b3426f6 a69441c b3509ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import numpy as np
from datetime import datetime
import time
import yaml
import threading
import os
import json
import shutil
from pathlib import Path
from swarmai.utils.CustomLogger import CustomLogger
from swarmai.utils.memory import VectorMemory
from swarmai.utils.task_queue.PandasQueue import PandasQueue
from swarmai.utils.task_queue.Task import Task
from swarmai.agents import ManagerAgent, GeneralPurposeAgent, GooglerAgent, CrunchbaseSearcher
class Swarm:
"""This class is responsible for managing the swarm of agents.
The logic:
1. User submits a problem to the swarm
2. The swarm consists of agents, shared memory and a task queue.
3. Agents have different roles.
4. Manager agents are responsible for creating tasks and assigning them to the task queue.
5. The swarm has a shared memory that the agents can query.
The tasks of the swarm class are:
1. Create and store the agents
2. Start the swarm
3. Provide the agents with the access to the shared memory and the task queue
4. Maintain stuck agents
5. Logging
Swarm tips (to be extanded as we gather more experience):
1. To avoid the swarm being stuck in a local maximum, the swarm should include agents with high and low exploration rates (models temperature).
2. High reward solutions need to be reinfoced by the swarm, and the low reward solutions need to be punished, so that the swarm algorithm converges.
3. The swarm architecture should have enough flexibility to allow for an emerging behaviour of the swarm (greater than the sum of its parts).
TODO:
- adaptation algorithm (dynamically change the number of agents and their roles)
- vector database for the shared memory
"""
WORKER_ROLES = {
"manager": ManagerAgent,
"googler": GooglerAgent,
"analyst": GeneralPurposeAgent,
"crunchbase_searcher": CrunchbaseSearcher
}
TASK_TYPES = [
Task.TaskTypes.breakdown_to_subtasks,
Task.TaskTypes.google_search,
Task.TaskTypes.analysis,
Task.TaskTypes.report_preparation,
Task.TaskTypes.crunchbase_search
]
TASK_ASSOCIATIONS = {
"manager": [Task.TaskTypes.breakdown_to_subtasks, Task.TaskTypes.report_preparation],
"googler": [Task.TaskTypes.google_search],
"analyst": [Task.TaskTypes.analysis],
"crunchbase_searcher": [Task.TaskTypes.crunchbase_search]
}
def __init__(self, swarm_config_loc):
"""Initializes the swarm.
Args:
agent_role_distribution (dict): The dictionary that maps the agent roles to the weight of agents with that role
"""
self.swarm_config_loc = swarm_config_loc
self._parse_swarm_config()
# creating shared memory
self.shared_memory_file = self.data_dir / 'shared_memory'
self.shared_memory = VectorMemory(self.shared_memory_file)
self.output_file = str((self.data_dir / 'output.txt').resolve())
with open(self.output_file, 'w') as f:
f.write("")
out_json = Path(str(self.output_file).replace(".txt", ".json"))
if out_json.exists():
with open(self.output_file, 'w') as f:
f.write("")
out_pretty = Path(str(self.output_file).replace(".txt", "_pretty.txt"))
if out_pretty.exists():
with open(self.output_file, 'w') as f:
f.write("")
# creating task queue
self.task_queue = PandasQueue(self.TASK_TYPES, self.WORKER_ROLES.keys(), self.TASK_ASSOCIATIONS)
# creating the logger
self.logger = CustomLogger(self.data_dir)
# creating agents
self.agents_ids = []
self.agents = self._create_agents() # returns just a list of agents
# get a lock
self.lock = threading.Lock()
def _create_agents(self):
"""Creates the tesnor of agents according to the tensor shape and the agent role distribution.
For now just randomly allocating them in the swarm"""
agents = []
counter = 0
for key, val in self.agent_role_distribution.items():
agent_role = key
agent_role = self._check_keys_and_agents(agent_role)
n = val
for _ in range(n):
agent_id = counter
counter += 1
# need each agent to have its own challenge instance, because sometimes the agens submit the answers with infinite loops
# also included a timeout for the agent's computation in the AgentBase class
agents.append(self.WORKER_ROLES[agent_role](agent_id, agent_role, self, self.logger))
self.agents_ids.append(agent_id)
self.log(f"Created {len(agents)} agents with roles: {[agent.agent_type for agent in agents]}")
return np.array(agents)
def _check_keys_and_agents(self, agent_role):
# if GOOGLE_API_KEY and GOOGLE_CSE_ID are not in os.environ, then the googler agent will be treated as a general purpose agent
if agent_role == "googler" and ("GOOGLE_API_KEY" not in os.environ or "GOOGLE_CSE_ID" not in os.environ):
agent_role = "analyst"
return agent_role
def run_swarm(self):
"""Runs the swarm for a given number of cycles or until the termination condition is met.
"""
# add the main task to the task queue
n_initial_manager_tasks = len(self.goals)
for i in range(n_initial_manager_tasks):
task_i = Task(
priority=100,
task_type=Task.TaskTypes.breakdown_to_subtasks,
task_description=f"Act as:\n{self.role}Gloabl goal:\n{self.global_goal}\nYour specific task is:\n{self.goals[i]}"
)
self.task_queue.add_task(task_i)
self.create_report_qa_task()
# start the agents
for agent in self.agents:
agent.max_cycles = 50
agent.name = f"Agent {agent.agent_id}" # inherited from threading.Thread => thread name
self.log(f"Starting agent {agent.agent_id} with type {agent.agent_type}")
agent.start()
if self.timeout is not None:
self.log(f"Swarm will run for {self.timeout} seconds")
time.sleep(self.timeout)
else:
time.sleep(1000000000000000000000000)
self.stop()
self.log("All agents have finished their work")
return True
def create_report_qa_task(self):
"""Creates a task that will be used to evaluate the report quality.
Make it as a method, because it will be called by the manager agent too.
"""
task_i = Task(
priority=50,
task_type=Task.TaskTypes.report_preparation,
task_description=f"Prepare a final report about a global goal."
)
self.task_queue.add_task(task_i)
def stop(self):
for agent in self.agents:
agent.ifRun = False
for agent in self.agents:
agent.join()
def _parse_swarm_config(self):
"""Parses the swarm configuration file and returns the agent role distribution.
It's a yaml file with the following structure:
swarm:
agents: # supported: manager, analyst, googler
- type: manager
n: 5
- type: analyst
n: 10
timeout: 10m
run_dir: /tmp/swarm
task:
role: |
professional venture capital agency, who has a proven track reckord of consistently funding successful startups
global_goal: |
A new startup just send us their pitch. Find if the startup is worth investing in. The startup is in the space of brain computer interfaces.
Their value proposition is to provide objective user experience research for new games beased directly on the brain activity of the user.
goals:
- Generate a comprehensive description of the startup. Find any mentions of the startup in the news, social media, etc.
- Find top companies and startups in this field. Find out their locations, raised funding, value proposition, differentiation, etc.
"""
file = self.swarm_config_loc
with open(file, "r") as f:
config = yaml.safe_load(f)
self.agent_role_distribution = {}
for agent in config["swarm"]["agents"]:
self.agent_role_distribution[agent["type"]] = agent["n"]
self.timeout = config["swarm"]["timeout_min"]*60
self.data_dir = Path(".", config["swarm"]["run_dir"]).resolve()
# first, try to delete the directory with all the data
try:
# delete all files and subdirectories in the data directory
for dir_i in self.data_dir.iterdir():
if dir_i.is_dir():
try:
shutil.rmtree(dir_i, ignore_errors=True)
except Exception:
self.log(f"Coudn't delete {dir_i}")
else:
try:
dir_i.unlink()
except Exception:
self.log(f"Coudn't delete {dir_i}")
self.log(f"Deleted old {dir_i}")
except Exception:
pass
self.data_dir.mkdir(parents=True, exist_ok=True)
# getting the tasks
self.role = config["task"]["role"]
self.global_goal = config["task"]["global_goal"]
self.goals = config["task"]["goals"]
def interact_with_output(self, message, method="write"):
"""Writed/read the report file.
Needed to do it as one method due to multithreading.
"""
with self.lock:
if method == "write":
# completely overwriting the file
with open(self.output_file, "w") as f:
f.write(message)
f.close()
# try to write it to json. can somtimes be malformated
out_json = str(self.output_file).replace(".txt", ".json")
message_dict = json.loads(message)
with open(out_json, "w") as f:
try:
json.dump(message_dict, f, indent=4)
except:
pass
f.close()
# pretty output. take json and outpout it as a text but with sections
out_pretty = str(self.output_file).replace(".txt", "_pretty.txt")
with open(out_pretty, "w") as f:
for _, value in message_dict.items():
f.write("========================================\n")
f.write("========================================\n")
for key, value in value.items():
f.write(f"**{key}**:\n{value}\n\n")
f.write("\n")
f.close()
return message
elif method == "read":
# reading the report file
with open(self.output_file, "r") as f:
message = f.read()
f.close()
return message
else:
raise ValueError(f"Unknown method {method}")
def log(self, message, level="info"):
level = level.lower()
if level == "info":
level = 20
elif level == "debug":
level = 10
elif level == "warning":
level = 30
elif level == "error":
level = 40
elif level == "critical":
level = 50
else:
level = 0
self.logger.log(level=level, msg= {'message': message})
|