File size: 11,919 Bytes
b3509ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "from pathlib import Path\n",
    "from langchain.text_splitter import TokenTextSplitter, CharacterTextSplitter\n",
    "from langchain.embeddings.openai import OpenAIEmbeddings\n",
    "from langchain.vectorstores import Chroma, Qdrant\n",
    "from langchain.document_loaders import TextLoader"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{}"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "json.loads(\"{}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[{\"1\": \"a\"},{\"2\": \"b\"}]\n"
     ]
    }
   ],
   "source": [
    "a = [{1: \"a\"}, {2: \"b\"}]\n",
    "x = \"[\"+\",\".join([json.dumps(i) for i in a]) + \"]\"\n",
    "print(x)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[{'1': 'a'}, {'2': 'b'}]\n"
     ]
    }
   ],
   "source": [
    "y = json.loads(x)\n",
    "print(y)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "D:\\00Repos\\GPT-Swarm\\keys.json\n"
     ]
    }
   ],
   "source": [
    "keys_file = Path(\".\").resolve().parent / \"keys.json\"\n",
    "print(keys_file)\n",
    "with open(keys_file) as f:\n",
    "    keys = json.load(f)\n",
    "os.environ[\"OPENAI_API_KEY\"] = keys[\"OPENAI_API_KEY\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Created a chunk of size 1361, which is longer than the specified 1000\n",
      "Created a chunk of size 1259, which is longer than the specified 1000\n",
      "Created a chunk of size 1008, which is longer than the specified 1000\n",
      "Created a chunk of size 1382, which is longer than the specified 1000\n",
      "Created a chunk of size 1039, which is longer than the specified 1000\n",
      "Created a chunk of size 1106, which is longer than the specified 1000\n",
      "Created a chunk of size 1026, which is longer than the specified 1000\n",
      "Created a chunk of size 1001, which is longer than the specified 1000\n",
      "Created a chunk of size 1079, which is longer than the specified 1000\n",
      "Created a chunk of size 1627, which is longer than the specified 1000\n",
      "Created a chunk of size 1149, which is longer than the specified 1000\n",
      "Created a chunk of size 1207, which is longer than the specified 1000\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "75"
      ]
     },
     "execution_count": 73,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "text_file_test = Path(\"D:\\\\00Repos\\\\GPT-Swarm\\\\runs\\\\run_2023-04-28_14-12-56\\\\shared_memory.json\")\n",
    "text_file_test = Path(\"./test_text.txt\")\n",
    "loader = TextLoader(text_file_test)\n",
    "documents = loader.load()\n",
    "# # improt json as text\n",
    "# text_dump = \"\"\n",
    "# with open(text_file_test) as f:\n",
    "#     text_test = json.load(f)\n",
    "#     for key, val in text_test.items():\n",
    "#         text_dump += val[\"content\"]\n",
    "\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=150)\n",
    "texts = text_splitter.split_documents(documents)\n",
    "len(texts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 182,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "93"
      ]
     },
     "execution_count": 182,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "text_file_test = Path(\"D:\\\\00Repos\\\\GPT-Swarm\\\\runs\\\\run_2023-04-28_14-12-56\\\\shared_memory.json\")\n",
    "# improt json as text\n",
    "text_dump = \"\"\n",
    "with open(text_file_test) as f:\n",
    "    text_test = json.load(f)\n",
    "    for key, val in text_test.items():\n",
    "        text_dump += val[\"content\"]\n",
    "\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1500, chunk_overlap=150, separator=\" \")\n",
    "texts = text_splitter.split_text(text_dump)\n",
    "len(texts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 121,
   "metadata": {},
   "outputs": [],
   "source": [
    "embeddings = OpenAIEmbeddings()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 165,
   "metadata": {},
   "outputs": [],
   "source": [
    "texts = [\"init\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 166,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using embedded DuckDB with persistence: data will be stored in: ./test_qdrant2\n"
     ]
    }
   ],
   "source": [
    "chroma_db = Chroma.from_texts(\n",
    "    texts=texts,\n",
    "    embedding=embeddings,\n",
    "    persist_directory=\"./test_qdrant2\",\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 167,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1"
      ]
     },
     "execution_count": 167,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chroma_db._collection.count()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 183,
   "metadata": {},
   "outputs": [],
   "source": [
    "_ = chroma_db.add_texts(\n",
    "    texts\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 184,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "95"
      ]
     },
     "execution_count": 184,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chroma_db._collection.count()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 193,
   "metadata": {},
   "outputs": [],
   "source": [
    "query = \"What is the destruction mechanic?\"\n",
    "docs = chroma_db.similarity_search_with_score(query, k=1)\n",
    "docs = chroma_db.max_marginal_relevance_search(query, k=4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 198,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Document(page_content='sessions\\n4. High replayability\\n5. Minimalistic design\\n6. Addictive gameplay\\n7. High score-based gameplay\\n\\nDestruction-Based Game Mechanic Ideas:\\n1. Smash and destroy buildings\\n2. Explode objects\\n3. Break through walls\\n4. Crush cars\\n5. Demolish structures\\n6. Destroy planets\\n7. Wreck havoc on cities\\n8. Obliterate objects with a hammer\\n\\nBreaking Down Destruction-Based Game Mechanic Ideas into Smaller Components:\\n1. Smash and destroy buildings: Players can use different tools to knock down buildings such as a wrecking ball, bulldozer, or explosives.\\n2. Explode objects: Players can set off bombs, grenades, or other explosive devices to destroy objects.\\n3. Break through walls: Players can use different tools to break through walls such as a sledgehammer, drill, or pickaxe.\\n4. Crush cars: Players can use different tools to crush cars such as a monster truck or a hydraulic press.\\n5. Demolish structures: Players can use different tools to demolish structures such as a wrecking ball or explosives.\\n6. Destroy planets: Players can use a spaceship to destroy planets by shooting lasers or other weapons.\\n7. Wreck havoc on cities: Players can cause chaos in a city by destroying buildings, cars, and other objects.\\n8. Obliterate objects with a hammer: Players can use a giant hammer to smash objects into pieces.\\n\\nCombining and Mixing Game Mechanics in Crazy Ways:\\n1. Players control a giant monster that destroys buildings with its fists while avoiding attacks from military forces.\\n2. Players', metadata={})"
      ]
     },
     "execution_count": 198,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "docs[0][0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 192,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "str"
      ]
     },
     "execution_count": 192,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "type(docs[0].page_content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 155,
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever_chroma = chroma_db.as_retriever(search_type=\"mmr\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 156,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain.chains import ConversationalRetrievalChain, RetrievalQA\n",
    "from langchain.chains.question_answering import load_qa_chain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 157,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = ChatOpenAI(model='gpt-3.5-turbo', temperature=0) # 'ada' 'gpt-3.5-turbo' 'gpt-4',\n",
    "qa_chain = load_qa_chain(model, chain_type=\"stuff\")\n",
    "qa = RetrievalQA(combine_documents_chain=qa_chain, retriever=retriever_chroma)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 158,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "-> **Question**: What are the principles of hypercasual game design? \n",
      "\n",
      "**Answer**: The principles of hypercasual game design include the following:\n",
      "1. Easy to Learn\n",
      "2. Quick Gameplay\n",
      "3. Addictive\n",
      "4. Minimalistic\n",
      "5. High Replayability\n",
      "6. Short gameplay sessions\n",
      "7. Focus on one core mechanic\n",
      "8. Easy to share and socialize. \n",
      "\n",
      "-> **Question**: what are the main destruction based machanics? \n",
      "\n",
      "**Answer**: Some main destruction-based game mechanics are:\n",
      "\n",
      "1. Smash and destroy buildings\n",
      "2. Explode objects\n",
      "3. Break through walls\n",
      "4. Crush cars\n",
      "5. Demolish structures\n",
      "6. Destroy planets\n",
      "7. Wreck havoc on cities\n",
      "8. Obliterate objects with a hammer\n",
      "\n",
      "In addition, game mechanics like Chain Reaction, Avalanche, Meteor Strike, Robot Uprising, and Nuclear Fallout also involve destruction-based gameplay objectives. \n",
      "\n"
     ]
    }
   ],
   "source": [
    "questions = [\n",
    "    \"What are the principles of hypercasual game design?\",\n",
    "    \"what are the main destruction based machanics?\"\n",
    "]\n",
    "\n",
    "for question in questions:  \n",
    "    result = qa.run(question)\n",
    "    print(f\"-> **Question**: {question} \\n\")\n",
    "    print(f\"**Answer**: {result} \\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv_gptswarm",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}