Spaces:
Runtime error
Runtime error
File size: 11,919 Bytes
b3509ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import json\n",
"from pathlib import Path\n",
"from langchain.text_splitter import TokenTextSplitter, CharacterTextSplitter\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores import Chroma, Qdrant\n",
"from langchain.document_loaders import TextLoader"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"json.loads(\"{}\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{\"1\": \"a\"},{\"2\": \"b\"}]\n"
]
}
],
"source": [
"a = [{1: \"a\"}, {2: \"b\"}]\n",
"x = \"[\"+\",\".join([json.dumps(i) for i in a]) + \"]\"\n",
"print(x)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'1': 'a'}, {'2': 'b'}]\n"
]
}
],
"source": [
"y = json.loads(x)\n",
"print(y)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"D:\\00Repos\\GPT-Swarm\\keys.json\n"
]
}
],
"source": [
"keys_file = Path(\".\").resolve().parent / \"keys.json\"\n",
"print(keys_file)\n",
"with open(keys_file) as f:\n",
" keys = json.load(f)\n",
"os.environ[\"OPENAI_API_KEY\"] = keys[\"OPENAI_API_KEY\"]"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Created a chunk of size 1361, which is longer than the specified 1000\n",
"Created a chunk of size 1259, which is longer than the specified 1000\n",
"Created a chunk of size 1008, which is longer than the specified 1000\n",
"Created a chunk of size 1382, which is longer than the specified 1000\n",
"Created a chunk of size 1039, which is longer than the specified 1000\n",
"Created a chunk of size 1106, which is longer than the specified 1000\n",
"Created a chunk of size 1026, which is longer than the specified 1000\n",
"Created a chunk of size 1001, which is longer than the specified 1000\n",
"Created a chunk of size 1079, which is longer than the specified 1000\n",
"Created a chunk of size 1627, which is longer than the specified 1000\n",
"Created a chunk of size 1149, which is longer than the specified 1000\n",
"Created a chunk of size 1207, which is longer than the specified 1000\n"
]
},
{
"data": {
"text/plain": [
"75"
]
},
"execution_count": 73,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"text_file_test = Path(\"D:\\\\00Repos\\\\GPT-Swarm\\\\runs\\\\run_2023-04-28_14-12-56\\\\shared_memory.json\")\n",
"text_file_test = Path(\"./test_text.txt\")\n",
"loader = TextLoader(text_file_test)\n",
"documents = loader.load()\n",
"# # improt json as text\n",
"# text_dump = \"\"\n",
"# with open(text_file_test) as f:\n",
"# text_test = json.load(f)\n",
"# for key, val in text_test.items():\n",
"# text_dump += val[\"content\"]\n",
"\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=150)\n",
"texts = text_splitter.split_documents(documents)\n",
"len(texts)"
]
},
{
"cell_type": "code",
"execution_count": 182,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"93"
]
},
"execution_count": 182,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"text_file_test = Path(\"D:\\\\00Repos\\\\GPT-Swarm\\\\runs\\\\run_2023-04-28_14-12-56\\\\shared_memory.json\")\n",
"# improt json as text\n",
"text_dump = \"\"\n",
"with open(text_file_test) as f:\n",
" text_test = json.load(f)\n",
" for key, val in text_test.items():\n",
" text_dump += val[\"content\"]\n",
"\n",
"text_splitter = CharacterTextSplitter(chunk_size=1500, chunk_overlap=150, separator=\" \")\n",
"texts = text_splitter.split_text(text_dump)\n",
"len(texts)"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {},
"outputs": [],
"source": [
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 165,
"metadata": {},
"outputs": [],
"source": [
"texts = [\"init\"]"
]
},
{
"cell_type": "code",
"execution_count": 166,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using embedded DuckDB with persistence: data will be stored in: ./test_qdrant2\n"
]
}
],
"source": [
"chroma_db = Chroma.from_texts(\n",
" texts=texts,\n",
" embedding=embeddings,\n",
" persist_directory=\"./test_qdrant2\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 167,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 167,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chroma_db._collection.count()"
]
},
{
"cell_type": "code",
"execution_count": 183,
"metadata": {},
"outputs": [],
"source": [
"_ = chroma_db.add_texts(\n",
" texts\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 184,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"95"
]
},
"execution_count": 184,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chroma_db._collection.count()"
]
},
{
"cell_type": "code",
"execution_count": 193,
"metadata": {},
"outputs": [],
"source": [
"query = \"What is the destruction mechanic?\"\n",
"docs = chroma_db.similarity_search_with_score(query, k=1)\n",
"docs = chroma_db.max_marginal_relevance_search(query, k=4)"
]
},
{
"cell_type": "code",
"execution_count": 198,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='sessions\\n4. High replayability\\n5. Minimalistic design\\n6. Addictive gameplay\\n7. High score-based gameplay\\n\\nDestruction-Based Game Mechanic Ideas:\\n1. Smash and destroy buildings\\n2. Explode objects\\n3. Break through walls\\n4. Crush cars\\n5. Demolish structures\\n6. Destroy planets\\n7. Wreck havoc on cities\\n8. Obliterate objects with a hammer\\n\\nBreaking Down Destruction-Based Game Mechanic Ideas into Smaller Components:\\n1. Smash and destroy buildings: Players can use different tools to knock down buildings such as a wrecking ball, bulldozer, or explosives.\\n2. Explode objects: Players can set off bombs, grenades, or other explosive devices to destroy objects.\\n3. Break through walls: Players can use different tools to break through walls such as a sledgehammer, drill, or pickaxe.\\n4. Crush cars: Players can use different tools to crush cars such as a monster truck or a hydraulic press.\\n5. Demolish structures: Players can use different tools to demolish structures such as a wrecking ball or explosives.\\n6. Destroy planets: Players can use a spaceship to destroy planets by shooting lasers or other weapons.\\n7. Wreck havoc on cities: Players can cause chaos in a city by destroying buildings, cars, and other objects.\\n8. Obliterate objects with a hammer: Players can use a giant hammer to smash objects into pieces.\\n\\nCombining and Mixing Game Mechanics in Crazy Ways:\\n1. Players control a giant monster that destroys buildings with its fists while avoiding attacks from military forces.\\n2. Players', metadata={})"
]
},
"execution_count": 198,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[0][0]"
]
},
{
"cell_type": "code",
"execution_count": 192,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"str"
]
},
"execution_count": 192,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(docs[0].page_content)"
]
},
{
"cell_type": "code",
"execution_count": 155,
"metadata": {},
"outputs": [],
"source": [
"retriever_chroma = chroma_db.as_retriever(search_type=\"mmr\")"
]
},
{
"cell_type": "code",
"execution_count": 156,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains import ConversationalRetrievalChain, RetrievalQA\n",
"from langchain.chains.question_answering import load_qa_chain"
]
},
{
"cell_type": "code",
"execution_count": 157,
"metadata": {},
"outputs": [],
"source": [
"model = ChatOpenAI(model='gpt-3.5-turbo', temperature=0) # 'ada' 'gpt-3.5-turbo' 'gpt-4',\n",
"qa_chain = load_qa_chain(model, chain_type=\"stuff\")\n",
"qa = RetrievalQA(combine_documents_chain=qa_chain, retriever=retriever_chroma)"
]
},
{
"cell_type": "code",
"execution_count": 158,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-> **Question**: What are the principles of hypercasual game design? \n",
"\n",
"**Answer**: The principles of hypercasual game design include the following:\n",
"1. Easy to Learn\n",
"2. Quick Gameplay\n",
"3. Addictive\n",
"4. Minimalistic\n",
"5. High Replayability\n",
"6. Short gameplay sessions\n",
"7. Focus on one core mechanic\n",
"8. Easy to share and socialize. \n",
"\n",
"-> **Question**: what are the main destruction based machanics? \n",
"\n",
"**Answer**: Some main destruction-based game mechanics are:\n",
"\n",
"1. Smash and destroy buildings\n",
"2. Explode objects\n",
"3. Break through walls\n",
"4. Crush cars\n",
"5. Demolish structures\n",
"6. Destroy planets\n",
"7. Wreck havoc on cities\n",
"8. Obliterate objects with a hammer\n",
"\n",
"In addition, game mechanics like Chain Reaction, Avalanche, Meteor Strike, Robot Uprising, and Nuclear Fallout also involve destruction-based gameplay objectives. \n",
"\n"
]
}
],
"source": [
"questions = [\n",
" \"What are the principles of hypercasual game design?\",\n",
" \"what are the main destruction based machanics?\"\n",
"]\n",
"\n",
"for question in questions: \n",
" result = qa.run(question)\n",
" print(f\"-> **Question**: {question} \\n\")\n",
" print(f\"**Answer**: {result} \\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv_gptswarm",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|