File size: 5,906 Bytes
1b0da9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import json
import base64
from typing import List, Tuple, Dict
import gradio as gr
import httpx
from sqlalchemy import create_engine, text
from dotenv import load_dotenv
import google.generativeai as genai

def get_secret(secret_name, service="", username=""):
    try:
        from google.colab import userdata
        return userdata.get(secret_name)
    except:
        try:
            return os.environ[secret_name]
        except:
            import keyring
            return keyring.get_password(service, username)

# Load environment variables
load_dotenv()

# Database configuration
DB_NAME = "kroyscappingdb"
DB_USER = "read_only"
DB_PASSWORD = get_secret('FASHION_PG_PASS')
DB_HOST = "rc1d-vbh2dw5ha0gpsazk.mdb.yandexcloud.net"
DB_PORT = "6432"

DATABASE_URL = f"postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"

# Create the SQLAlchemy engine
db_conn = create_engine(DATABASE_URL)

# Configure Gemini API
genai.configure(api_key=get_secret("GEMINI_API_KEY"))

def get_marketplace_and_main_image(id_product_money: str) -> Tuple[str, str]:
    """Get marketplace and main image URL for a product."""
    query = text("""
        select mp, image as main_image_url
        from public.products
        where id_product_money = :id_product_money
    """)
    
    with db_conn.connect() as connection:
        result = connection.execute(query, {"id_product_money": id_product_money}).first()
        if result is None:
            raise ValueError(f"No product found with id_product_money: {id_product_money}")
        return result.mp, result.main_image_url

def get_additional_images(id_product_money: str, marketplace: str) -> List[str]:
    """Get additional images based on marketplace."""
    if marketplace == 'lamoda':
        query = text("""
            select info_chrc->'gallery' as more_images
            from public.lamoda_chrc_and_reviews
            where id_product_money = :id_product_money
            limit 1
        """)
        with db_conn.connect() as connection:
            result = connection.execute(query, {"id_product_money": id_product_money}).first()
            if result and result.more_images:
                paths = json.loads(result.more_images)
                return [f"https://a.lmcdn.ru/product{path}" for path in paths]
    
    elif marketplace == 'wildberries':
        query = text("""
            select features->'images' as more_images
            from public.wb_chrc
            where id_product_money = :id_product_money
            limit 1
        """)
        with db_conn.connect() as connection:
            result = connection.execute(query, {"id_product_money": id_product_money}).first()
            if result and result.more_images:
                return json.loads(result.more_images)
    
    return []

def download_and_encode_images(image_urls: List[str]) -> List[Dict]:
    """Download images and convert them to base64 format for Gemini."""
    encoded_images = []
    with httpx.Client() as client:
        for url in image_urls:
            try:
                response = client.get(url)
                response.raise_for_status()
                encoded_image = base64.b64encode(response.content).decode('utf-8')
                encoded_images.append({
                    'mime_type': 'image/jpeg',  # Assuming JPEG format
                    'data': encoded_image
                })
            except Exception as e:
                print(f"Error downloading image {url}: {str(e)}")
    return encoded_images

def get_gemini_response(model_name: str, encoded_images: List[Dict], prompt: str) -> str:
    """Get response from a Gemini model."""
    try:
        model = genai.GenerativeModel(model_name)
        response = model.generate_content(encoded_images + [prompt])
        return response.text
    except Exception as e:
        return f"Error with {model_name}: {str(e)}"

def process_input(id_product_money: str, prompt: str) -> Tuple[List[str], str, str]:
    """Main processing function."""
    try:
        # Get marketplace and main image
        marketplace, main_image = get_marketplace_and_main_image(id_product_money)
        
        # Get additional images
        additional_images = get_additional_images(id_product_money, marketplace)
        
        # Combine all images
        all_image_urls = [main_image] + additional_images
        
        # Download and encode images
        encoded_images = download_and_encode_images(all_image_urls)
        
        if not encoded_images:
            raise ValueError("No images could be downloaded")
        
        # Get responses from both models
        gemini_1_5_response = get_gemini_response("gemini-1.5-pro", encoded_images, prompt)
        gemini_2_0_response = get_gemini_response("gemini-pro-vision", encoded_images, prompt)
        
        return all_image_urls, gemini_1_5_response, gemini_2_0_response
    
    except Exception as e:
        return [], f"Error: {str(e)}", f"Error: {str(e)}"

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Product Image Analysis with Gemini Models")
    
    with gr.Row():
        id_input = gr.Textbox(label="Product ID (id_product_money)")
        prompt_input = gr.Textbox(label="Prompt for VLMs")
    
    submit_btn = gr.Button("Analyze")
    
    with gr.Row():
        image_gallery = gr.Gallery(label="Product Images")
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Gemini 1.5 Pro Response")
            gemini_1_5_output = gr.Textbox(label="")
        with gr.Column():
            gr.Markdown("### Gemini Pro Vision Response")
            gemini_2_0_output = gr.Textbox(label="")
    
    submit_btn.click(
        fn=process_input,
        inputs=[id_input, prompt_input],
        outputs=[image_gallery, gemini_1_5_output, gemini_2_0_output]
    )

if __name__ == "__main__":
    demo.launch(share=True)