alexander-lazarin's picture
Use scaled-down Lamoda images
c65ba24
raw
history blame
9.66 kB
import os
import json
import base64
from typing import List, Tuple, Dict
import gradio as gr
import httpx
from sqlalchemy import create_engine, text
from dotenv import load_dotenv
import google.generativeai as genai
def get_secret(secret_name, service="", username=""):
try:
from google.colab import userdata
return userdata.get(secret_name)
except:
try:
return os.environ[secret_name]
except:
import keyring
return keyring.get_password(service, username)
# Load environment variables
load_dotenv()
# Database configuration
DB_NAME = "kroyscappingdb"
DB_USER = "read_only"
DB_PASSWORD = get_secret('FASHION_PG_PASS')
DB_HOST = "rc1d-vbh2dw5ha0gpsazk.mdb.yandexcloud.net"
DB_PORT = "6432"
DATABASE_URL = f"postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
# Create the SQLAlchemy engine
db_conn = create_engine(DATABASE_URL)
# Configure Gemini API
genai.configure(api_key=get_secret("GEMINI_API_KEY"))
def get_marketplace_and_main_image(id_product_money: str) -> Tuple[str, str]:
"""Get marketplace and main image URL for a product."""
query = text("""
select mp, image as main_image_url
from public.products
where id_product_money = :id_product_money
""")
with db_conn.connect() as connection:
result = connection.execute(query, {"id_product_money": id_product_money}).first()
if result is None:
raise ValueError(f"No product found with id_product_money: {id_product_money}")
return result.mp, result.main_image_url
def get_additional_images(id_product_money: str, marketplace: str) -> List[str]:
"""Get additional images based on marketplace."""
if marketplace == 'lamoda':
query = text("""
select info_chrc->'gallery' as more_images
from public.lamoda_chrc_and_reviews
where id_product_money = :id_product_money
limit 1
""")
with db_conn.connect() as connection:
result = connection.execute(query, {"id_product_money": id_product_money}).first()
if result and result.more_images:
print(f"Lamoda raw more_images: {result.more_images}")
# Handle both string JSON and direct list cases
if isinstance(result.more_images, str):
paths = json.loads(result.more_images)
else:
paths = result.more_images
return [f"https://a.lmcdn.ru/product{path}" for path in paths]
elif marketplace == 'wildberries':
query = text("""
select features->>'images' as more_images
from public.wb_chrc
where id_product_money = :id_product_money
limit 1
""")
with db_conn.connect() as connection:
result = connection.execute(query, {"id_product_money": id_product_money}).first()
if result and result.more_images:
print(f"Wildberries raw more_images: {result.more_images}")
try:
urls = json.loads(result.more_images)
if isinstance(urls, list) and len(urls) > 0:
# Split the URLs by semicolons
return urls[0].split(';')
return []
except Exception as e:
print(f"Error parsing JSON: {str(e)}")
print(f"Type of more_images: {type(result.more_images)}")
return []
return []
def try_scaled_image_url(client: httpx.Client, url: str, marketplace: str, max_retries: int = 3) -> str:
"""Try to get a scaled version of the image URL, fall back to original if not available."""
if marketplace == 'lamoda':
scaled_url = url.replace('product', 'img600x866')
for attempt in range(max_retries):
try:
response = client.get(scaled_url, timeout=5.0)
if response.status_code == 200:
print(f"Using scaled image: {scaled_url}")
return scaled_url
else:
print(f"Scaled image not available (status {response.status_code}), using original: {url}")
return url
except httpx.TimeoutException:
print(f"Timeout checking scaled image (attempt {attempt + 1}/{max_retries})")
if attempt == max_retries - 1:
print(f"Max retries reached, using original: {url}")
return url
except Exception as e:
print(f"Error checking scaled image: {type(e).__name__}: {str(e)}")
return url
return url
def download_and_encode_images(image_urls: List[str], marketplace: str) -> List[Dict]:
"""Download images and convert them to base64 format for Gemini."""
encoded_images = []
timeout = httpx.Timeout(10.0, connect=5.0)
with httpx.Client(timeout=timeout) as client:
for url in image_urls:
max_retries = 3
for attempt in range(max_retries):
try:
# Try to get scaled version if available
final_url = try_scaled_image_url(client, url, marketplace)
response = client.get(final_url)
response.raise_for_status()
encoded_image = base64.b64encode(response.content).decode('utf-8')
encoded_images.append({
'mime_type': 'image/jpeg', # Assuming JPEG format
'data': encoded_image
})
break # Success, exit retry loop
except httpx.TimeoutException:
print(f"Timeout downloading image (attempt {attempt + 1}/{max_retries}): {url}")
if attempt == max_retries - 1:
print(f"Max retries reached, skipping image: {url}")
except Exception as e:
print(f"Error downloading image: {type(e).__name__}: {str(e)}")
if attempt == max_retries - 1:
print(f"Max retries reached, skipping image: {url}")
return encoded_images
def get_gemini_response(model_name: str, encoded_images: List[Dict], prompt: str) -> str:
"""Get response from a Gemini model."""
try:
model = genai.GenerativeModel(model_name)
# Create a list of content parts
content = []
# Add each image as a separate content part
for img in encoded_images:
content.append(img)
# Add the prompt as the final content part
content.append(prompt)
# Generate response
response = model.generate_content(content)
return response.text
except Exception as e:
return f"Error with {model_name}: {str(e)}"
def process_input(id_product_money: str, prompt: str) -> Tuple[List[str], str, str]:
"""Main processing function."""
try:
print("Getting marketplace and main image...")
marketplace, main_image = get_marketplace_and_main_image(id_product_money)
print(f"Marketplace: {marketplace}")
print(f"Main image: {main_image}")
print("\nGetting additional images...")
additional_images = get_additional_images(id_product_money, marketplace)
print(f"Additional images: {additional_images}")
# Combine all images and remove duplicates while preserving order
all_image_urls = []
seen = set()
for url in [main_image] + additional_images:
if url not in seen:
seen.add(url)
all_image_urls.append(url)
print(f"\nAll image URLs: {all_image_urls}")
print("\nDownloading and encoding images...")
encoded_images = download_and_encode_images(all_image_urls, marketplace)
print(f"Number of encoded images: {len(encoded_images)}")
if not encoded_images:
raise ValueError("No images could be downloaded")
print("\nGetting Gemini responses...")
# Get responses from both models
gemini_1_5_response = get_gemini_response("gemini-1.5-flash", encoded_images, prompt)
gemini_2_0_response = get_gemini_response("gemini-2.0-flash-exp", encoded_images, prompt)
return all_image_urls, gemini_1_5_response, gemini_2_0_response
except Exception as e:
print(f"\nError in process_input: {str(e)}")
return [], f"Error: {str(e)}", f"Error: {str(e)}"
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Product Image Analysis with Gemini Models")
with gr.Row():
id_input = gr.Textbox(label="Product ID (id_product_money)")
prompt_input = gr.Textbox(label="Prompt for VLMs", value="What is this?")
submit_btn = gr.Button("Analyze")
with gr.Row():
image_gallery = gr.Gallery(label="Product Images", show_label=True)
with gr.Row():
with gr.Column():
gr.Markdown("### Gemini 1.5 Flash Response")
gemini_1_5_output = gr.Textbox(label="", show_copy_button=True)
with gr.Column():
gr.Markdown("### Gemini 2.0 Flash Exp Response")
gemini_2_0_output = gr.Textbox(label="", show_copy_button=True)
submit_btn.click(
fn=process_input,
inputs=[id_input, prompt_input],
outputs=[image_gallery, gemini_1_5_output, gemini_2_0_output]
)
if __name__ == "__main__":
demo.launch(share=True)