Spaces:
Sleeping
Sleeping
Commit
·
d087544
1
Parent(s):
8cd000d
chore: Add logging
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
"""Røst ASR demo."""
|
2 |
|
|
|
3 |
import os
|
4 |
import warnings
|
5 |
|
@@ -11,6 +12,13 @@ from punctfix import PunctFixer
|
|
11 |
from transformers import pipeline
|
12 |
from dotenv import load_dotenv
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
load_dotenv()
|
15 |
|
16 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
@@ -33,6 +41,7 @@ send the audio to the model for transcription. You can also upload an audio file
|
|
33 |
pressing the {icon} button.
|
34 |
"""
|
35 |
|
|
|
36 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
37 |
transcriber = pipeline(
|
38 |
task="automatic-speech-recognition",
|
@@ -40,8 +49,12 @@ transcriber = pipeline(
|
|
40 |
device=device,
|
41 |
token=os.getenv("HUGGINGFACE_HUB_TOKEN", True),
|
42 |
)
|
|
|
|
|
43 |
transcription_fixer = PunctFixer(language="da", device=device)
|
44 |
|
|
|
|
|
45 |
def transcribe_audio(sampling_rate_and_audio: tuple[int, np.ndarray]) -> str:
|
46 |
"""Transcribe the audio.
|
47 |
|
@@ -56,12 +69,18 @@ def transcribe_audio(sampling_rate_and_audio: tuple[int, np.ndarray]) -> str:
|
|
56 |
if audio.ndim > 1:
|
57 |
audio = np.mean(audio, axis=1)
|
58 |
audio = samplerate.resample(audio, 16_000 / sampling_rate, "sinc_best")
|
|
|
|
|
59 |
transcription = transcriber(inputs=audio)
|
60 |
if not isinstance(transcription, dict):
|
61 |
return ""
|
|
|
|
|
62 |
cleaned_transcription = transcription_fixer.punctuate(
|
63 |
text=transcription["text"]
|
64 |
)
|
|
|
|
|
65 |
return cleaned_transcription
|
66 |
|
67 |
demo = gr.Interface(
|
|
|
1 |
"""Røst ASR demo."""
|
2 |
|
3 |
+
import logging
|
4 |
import os
|
5 |
import warnings
|
6 |
|
|
|
12 |
from transformers import pipeline
|
13 |
from dotenv import load_dotenv
|
14 |
|
15 |
+
logging.basicConfig(
|
16 |
+
level=logging.INFO,
|
17 |
+
format="%(asctime)s ⋅ %(name)s ⋅ %(message)s",
|
18 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
19 |
+
)
|
20 |
+
logger = logging.getLogger("roest-asr-demo")
|
21 |
+
|
22 |
load_dotenv()
|
23 |
|
24 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
|
|
41 |
pressing the {icon} button.
|
42 |
"""
|
43 |
|
44 |
+
logger.info("Loading the ASR model...")
|
45 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
46 |
transcriber = pipeline(
|
47 |
task="automatic-speech-recognition",
|
|
|
49 |
device=device,
|
50 |
token=os.getenv("HUGGINGFACE_HUB_TOKEN", True),
|
51 |
)
|
52 |
+
|
53 |
+
logger.info("Loading the punctuation fixer model...")
|
54 |
transcription_fixer = PunctFixer(language="da", device=device)
|
55 |
|
56 |
+
logger.info("Models loaded, ready to transcribe audio.")
|
57 |
+
|
58 |
def transcribe_audio(sampling_rate_and_audio: tuple[int, np.ndarray]) -> str:
|
59 |
"""Transcribe the audio.
|
60 |
|
|
|
69 |
if audio.ndim > 1:
|
70 |
audio = np.mean(audio, axis=1)
|
71 |
audio = samplerate.resample(audio, 16_000 / sampling_rate, "sinc_best")
|
72 |
+
|
73 |
+
logger.info(f"Transcribing audio clip of {len(audio) / 16_000:.2f} seconds...")
|
74 |
transcription = transcriber(inputs=audio)
|
75 |
if not isinstance(transcription, dict):
|
76 |
return ""
|
77 |
+
|
78 |
+
logger.info(f"Raw transcription is {transcription['text']!r}. Cleaning it up...")
|
79 |
cleaned_transcription = transcription_fixer.punctuate(
|
80 |
text=transcription["text"]
|
81 |
)
|
82 |
+
|
83 |
+
logger.info(f"Final transcription: {cleaned_transcription!r}")
|
84 |
return cleaned_transcription
|
85 |
|
86 |
demo = gr.Interface(
|