File size: 7,188 Bytes
c3d63d6
 
 
 
 
 
 
 
 
 
eba8084
 
 
 
 
 
 
 
c3d63d6
 
 
 
 
 
 
 
 
 
 
 
 
 
eba8084
 
 
 
c3d63d6
eba8084
c3d63d6
 
eba8084
 
 
 
 
 
 
 
 
 
 
 
920f119
eba8084
 
 
920f119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eba8084
 
920f119
eba8084
 
 
 
 
 
 
 
c3d63d6
 
 
eba8084
c3d63d6
 
eba8084
c3d63d6
eba8084
c3d63d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eba8084
c3d63d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import gradio as gr
import ccxt
import pandas as pd
from ta import add_all_ta_features
import time
import torch
import json
import numpy as np
from sklearn.preprocessing import StandardScaler
from huggingface_hub import hf_hub_download
import matplotlib.pyplot as plt
import io
from PIL import Image
import datetime


predictions_history = []
timestamps_history = []

def gradio_interface():
    def process_data():
        try:
            df = fetch_data()
            df = calculate_all_indicators(df)
            row = df.iloc[-2]
            last_row_filtered = row[selected_columns].fillna(0).values.tolist()
            prediction = predict(last_row_filtered)

            result = (f"Close: {prediction['Predicted Target']:.2f}, "
                      f"Open: {prediction['Predicted Target Open']:.2f}, "
                      f"High: {prediction['Predicted Target High']:.2f}, "
                      f"Low: {prediction['Predicted Target Low']:.2f}")

            plot_img = plot_predictions(prediction)

            return result, plot_img
        except Exception as e:
            return f"Error: {str(e)}", None

    def predict_interface():
        result, plot_img = process_data()
        return result, plot_img

    def plot_predictions(predictions):
        current_time = datetime.datetime.now()
        current_prediction = [predictions['Predicted Target'], predictions['Predicted Target Open'],
                              predictions['Predicted Target High'], predictions['Predicted Target Low']]

        if not predictions_history or current_prediction != predictions_history[-1]:
            timestamps_history.append(current_time + datetime.timedelta(minutes=15))
            predictions_history.append(current_prediction)

            if len(timestamps_history) > 10: 
                timestamps_history.pop(0)
                predictions_history.pop(0)

        plt.figure(figsize=(12, 8))
        labels = ['Close', 'Open', 'High', 'Low']
        colors = ['green', 'red', 'blue', 'purple']

        for i, (label, color) in enumerate(zip(labels, colors)):
            y_values = [history[i] for history in predictions_history]
            plt.plot(timestamps_history, y_values, color=color, label=label, marker='o')
            
            if timestamps_history:
                plt.text(
                    timestamps_history[-1], y_values[-1], f'{label}: {y_values[-1]:.2f}',
                    color=color, fontsize=10, ha='left', va='bottom'
                )

        plt.title('Predicted Candles for BTC/USDT Futures', fontsize=16)
        plt.xlabel('Time', fontsize=14)
        plt.ylabel('Price', fontsize=14)
        plt.xticks(rotation=45)
        plt.grid(True)
        plt.legend(fontsize=12)
        plt.tight_layout()

        buf = io.BytesIO()
        plt.savefig(buf, format="png")
        buf.seek(0)
        img = Image.open(buf)
        return img


    with gr.Blocks() as app:
        gr.Markdown("## Prediction Interface")
        gr.Markdown("This interface will give you 15 mins prediction of BTC/USD futures value")

        output = gr.Textbox(label="Prediction Result")
        plot_output = gr.Image(label="Prediction Plot", type="pil")
        button = gr.Button("Get Prediction")
        button.click(fn=predict_interface, inputs=[], outputs=[output, plot_output])

    app.launch(show_api=False, auth=None)

if __name__ == "__main__":

    def fetch_data(symbol="BTC/USDT", timeframe="1m", limit=500):
        exchange = ccxt.binanceus({
            "rateLimit": 1200,
            "enableRateLimit": True,
        })
        ohlcv = exchange.fetch_ohlcv(symbol, timeframe, limit=limit)
        df = pd.DataFrame(ohlcv, columns=["timestamp", "Open", "High", "Low", "Close", "Volume"])
        df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
        return df

    def calculate_all_indicators(data):
        data = add_all_ta_features(
            df=data,
            open="Open",
            high="High",
            low="Low",
            close="Close",
            volume="Volume",
            fillna=False
        )
        return data

    model_path = hf_hub_download(repo_id="alexandrlukashov/gru-model-time-series", filename="gru_model.pth")
    config_path = hf_hub_download(repo_id="alexandrlukashov/gru-model-time-series", filename="gru_config.json")

    with open(config_path, "r") as f:
        config = json.load(f)

    class GRUModel(torch.nn.Module):
        def __init__(self, input_size, hidden_size, num_layers, output_size):
            super(GRUModel, self).__init__()
            self.hidden_size = hidden_size
            self.num_layers = num_layers
            self.gru = torch.nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
            self.fc = torch.nn.Linear(hidden_size, output_size)

        def forward(self, x):
            h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
            out, _ = self.gru(x, h0)
            out = self.fc(out[:, -1, :])
            return out

    model = GRUModel(
        input_size=config["input_size"],
        hidden_size=config["hidden_size"],
        num_layers=config["num_layers"],
        output_size=4
    )
    model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
    model.eval()

    scaler_path = hf_hub_download(repo_id="alexandrlukashov/gru-model-time-series", filename="scaler_X.json")

    with open(scaler_path, "r") as f:
        scaler_params = json.load(f)

    scaler = StandardScaler()
    scaler.mean_ = np.array(scaler_params["mean"])
    scaler.scale_ = np.array(scaler_params["scale"])
    scaler.var_ = scaler.scale_**2

    def preprocess_input(data):
        data = np.array(data).reshape(1, -1)
        scaled_data = scaler.transform(data)
        return scaled_data

    def inverse_scale_output(predictions):
        dummy_input = np.zeros((1, len(scaler.mean_)))
        dummy_input[:, :4] = predictions
        unscaled_predictions = scaler.inverse_transform(dummy_input)
        return unscaled_predictions[0, :4]

    def predict(inputs):
        inputs = preprocess_input(inputs)
        inputs_tensor = torch.tensor(inputs, dtype=torch.float32).unsqueeze(1)
        with torch.no_grad():
            predictions = model(inputs_tensor).numpy()
        predictions = inverse_scale_output(predictions)
        return {
            "Predicted Target": predictions[0],
            "Predicted Target Open": predictions[1],
            "Predicted Target High": predictions[2],
            "Predicted Target Low": predictions[3]
        }

    selected_columns = [
        'Open', 'High', 'Low', 'Close', 'others_cr', 'trend_ema_fast',
        'trend_ichimoku_conv', 'momentum_kama', 'volatility_kcc', 'volume_vwap',
        'trend_sma_fast', 'trend_ichimoku_a', 'volatility_kch', 'volatility_kcl',
        'volatility_dcm', 'trend_ema_slow', 'volatility_bbm', 'trend_ichimoku_base',
        'trend_sma_slow', 'trend_psar_down', 'trend_psar_up', 'volatility_dch',
        'volatility_bbh', 'trend_ichimoku_b', 'volatility_dcl', 'volatility_bbl',
        'trend_visual_ichimoku_a', 'trend_visual_ichimoku_b'
    ]

    gradio_interface()