Spaces:
Runtime error
Runtime error
from gradio.outputs import Label | |
from icevision.all import * | |
from icevision.models.checkpoint import * | |
import PIL | |
import gradio as gr | |
import os | |
# Load model | |
checkpoint_path = "model_checkpoint.pth" | |
checkpoint_and_model = model_from_checkpoint(checkpoint_path) | |
model = checkpoint_and_model["model"] | |
model_type = checkpoint_and_model["model_type"] | |
class_map = checkpoint_and_model["class_map"] | |
# Transforms | |
img_size = checkpoint_and_model["img_size"] | |
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()]) | |
# Populate examples in Gradio interface | |
examples = [ | |
['1.jpg'], | |
['2.jpg'], | |
['3.jpg'] | |
] | |
def show_preds(input_image): | |
img = PIL.Image.fromarray(input_image, "RGB") | |
pred_dict = model_type.end2end_detect(img, valid_tfms, model, | |
class_map=class_map, | |
detection_threshold=0.5, | |
display_label=False, | |
display_bbox=True, | |
return_img=True, | |
font_size=16, | |
label_color="#FF59D6") | |
return pred_dict["img"] | |
gr_interface = gr.Interface( | |
fn=show_preds, | |
inputs=["image"], | |
outputs=[gr.outputs.Image(type="pil", label="RetinaNet Inference")], | |
title="Aircraft Detector", | |
examples=examples, | |
) | |
gr_interface.launch(inline=False, share=False, debug=True) | |