Spaces:
Runtime error
Runtime error
update to dresses
Browse files
app.py
CHANGED
@@ -1,5 +1,12 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
2 |
from PIL import Image
|
|
|
|
|
|
|
|
|
3 |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
4 |
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
5 |
from src.unet_hacked_tryon import UNet2DConditionModel
|
@@ -8,21 +15,15 @@ from transformers import (
|
|
8 |
CLIPVisionModelWithProjection,
|
9 |
CLIPTextModel,
|
10 |
CLIPTextModelWithProjection,
|
|
|
11 |
)
|
12 |
-
from diffusers import DDPMScheduler,AutoencoderKL
|
13 |
-
from typing import List
|
14 |
-
|
15 |
-
import torch
|
16 |
-
import os
|
17 |
-
from transformers import AutoTokenizer
|
18 |
-
import spaces
|
19 |
-
import numpy as np
|
20 |
from utils_mask import get_mask_location
|
21 |
from torchvision import transforms
|
22 |
import apply_net
|
23 |
from preprocess.humanparsing.run_parsing import Parsing
|
24 |
from preprocess.openpose.run_openpose import OpenPose
|
25 |
-
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
|
26 |
from torchvision.transforms.functional import to_pil_image
|
27 |
|
28 |
|
@@ -150,7 +151,7 @@ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_ste
|
|
150 |
if is_checked:
|
151 |
keypoints = openpose_model(human_img.resize((384,512)))
|
152 |
model_parse, _ = parsing_model(human_img.resize((384,512)))
|
153 |
-
mask, mask_gray = get_mask_location('hd', "
|
154 |
mask = mask.resize((768,1024))
|
155 |
else:
|
156 |
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from typing import List
|
5 |
from PIL import Image
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
import spaces # Moved here to avoid CUDA initialization issues
|
9 |
+
|
10 |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
11 |
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
12 |
from src.unet_hacked_tryon import UNet2DConditionModel
|
|
|
15 |
CLIPVisionModelWithProjection,
|
16 |
CLIPTextModel,
|
17 |
CLIPTextModelWithProjection,
|
18 |
+
AutoTokenizer # Add this line to import AutoTokenizer
|
19 |
)
|
20 |
+
from diffusers import DDPMScheduler, AutoencoderKL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
from utils_mask import get_mask_location
|
22 |
from torchvision import transforms
|
23 |
import apply_net
|
24 |
from preprocess.humanparsing.run_parsing import Parsing
|
25 |
from preprocess.openpose.run_openpose import OpenPose
|
26 |
+
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
|
27 |
from torchvision.transforms.functional import to_pil_image
|
28 |
|
29 |
|
|
|
151 |
if is_checked:
|
152 |
keypoints = openpose_model(human_img.resize((384,512)))
|
153 |
model_parse, _ = parsing_model(human_img.resize((384,512)))
|
154 |
+
mask, mask_gray = get_mask_location('hd', "dresses", model_parse, keypoints)
|
155 |
mask = mask.resize((768,1024))
|
156 |
else:
|
157 |
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|