File size: 2,629 Bytes
779723a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from fastapi import FastAPI, File, UploadFile
from pydantic import BaseModel
from transformers import SamModel, SamProcessor
import torch
from PIL import Image
import numpy as np
import io
import base64

class ImageRequest(BaseModel):
    image_base64: str

# Inizializza l'app FastAPI
app = FastAPI()

# Carica il modello e il processore SAM
model = SamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
model.to("cpu")  # Usa CPU per il free tier

@app.get("/health")
async def health_check():
    return {"status": "ok"}

def preprocess_image(image: Image.Image, size=(320, 320)):
    """Ridimensiona l'immagine per velocizzare l'inferenza"""
    img = image.convert("RGB")
    img = img.resize(size, Image.LANCZOS)  # 320x320 è veloce su CPU
    return img

# Funzione per segmentare l'immagine
def segment_image(image: Image.Image):
    # Prepara l'input per SAM
    inputs = processor(image, return_tensors="pt").to("cpu")
    
    # Inferenza
    with torch.no_grad():
        outputs = model(**inputs, multimask_output=False)
    
    # Post-processa la maschera
    mask = processor.image_processor.post_process_masks(
        outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
    )[0][0].cpu().numpy()
    
    # Converti la maschera in immagine
    mask_img = Image.fromarray((mask * 255).astype(np.uint8))
    
    # Converti la maschera in base64 per la risposta
    buffered = io.BytesIO()
    mask_img.save(buffered, format="PNG")
    mask_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
    
    # Annotazioni
    annotations = {"mask": mask.tolist(), "label": "object"}
    
    return mask_base64, annotations

# Endpoint API
# @app.post("/segment")
async def segment_endpoint(file: ImageRequest):
    try:
        # Decodifica la stringa Base64
        image_data = base64.b64decode(file.image_base64)
        image = Image.open(io.BytesIO(image_data))
        image = preprocess_image(image)
        
        # Segmenta l'immagine
        mask_base64, annotations = segment_image(image)
        
        # Restituisci la risposta
        return {
            "mask": f"data:image/png;base64,{mask_base64}",
            "annotations": annotations
        }
    except Exception as e:
        # In caso di errore (es. Base64 non valido), restituisci False
        return {"output": False, "error": str(e), "debug": file}

# Per compatibilità con Hugging Face Spaces (Uvicorn viene gestito automaticamente)
# if __name__ == "__main__":
#     import uvicorn
#     uvicorn.run(app, host="0.0.0.0", port=7860)