File size: 1,838 Bytes
f8b9c38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import requests
from PIL import Image
import io
import base64
import logging
from app import ModelManager

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def process_image(url: str):
    try:
        # Initialize model manager (will load models if not already loaded)
        model_manager = ModelManager()
        
        # Download image from URL
        response = requests.get(url, stream=True)
        if response.status_code != 200:
            raise ValueError("Could not download image from URL")
        
        # Process image
        image = Image.open(response.raw).convert("RGB")
        result = model_manager.process_clothes_image(image)
        
        # Convert base64 mask back to image
        mask_data = result["mask"].split(",")[1]
        mask_bytes = base64.b64decode(mask_data)
        mask_image = Image.open(io.BytesIO(mask_bytes))
        
        return image, mask_image, f"Processed image size: {result['size']}"
        
    except Exception as e:
        logger.error(f"Error processing image: {str(e)}")
        return None, None, f"Error: {str(e)}"

# Create Gradio interface
iface = gr.Interface(
    fn=process_image,
    inputs=gr.Textbox(label="Image URL", placeholder="Enter the URL of the image"),
    outputs=[
        gr.Image(label="Original Image"),
        gr.Image(label="Segmentation Mask"),
        gr.Textbox(label="Processing Info")
    ],
    title="Clothes Segmentation",
    description="Enter an image URL to generate a segmentation mask for clothing items.",
    examples=[
        ["https://example.com/path/to/clothing/image.jpg"],
        ["https://another-example.com/fashion/photo.jpg"]
    ],
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch(server_port=7861)  # Using different port than FastAPI