File size: 6,704 Bytes
b2702fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
from transformers import AutoModelForSemanticSegmentation, SegformerImageProcessor
from huggingface_hub import HfApi, create_repo, upload_file, model_info
import os
from dotenv import load_dotenv
from pathlib import Path
import logging
import argparse
import tempfile

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()

class ConfigurationError(Exception):
    """Raised when required environment variables are missing"""
    pass

class HFOnnxConverter:
    def __init__(self, token=None):
        # Load configuration from environment
        self.token = token or os.getenv("HF_TOKEN")
        self.model_cache_dir = os.getenv("MODEL_CACHE_DIR")
        self.onnx_output_dir = os.getenv("ONNX_OUTPUT_DIR")

        # Validate configuration
        if not self.token:
            raise ConfigurationError("HF_TOKEN is required in environment variables")

        # Create directories if they don't exist
        for directory in [self.model_cache_dir, self.onnx_output_dir]:
            if directory:
                Path(directory).mkdir(parents=True, exist_ok=True)

        self.api = HfApi()

        # Login to Hugging Face
        try:
            self.api.whoami(token=self.token)
            logger.info("Successfully authenticated with Hugging Face")
        except Exception as e:
            raise ConfigurationError(f"Failed to authenticate with Hugging Face: {str(e)}")
        
    def setup_repository(self, repo_name: str) -> str:
        """Create or get repository on Hugging Face Hub"""
        try:
            create_repo(
                repo_name,
                token=self.token,
                private=False,
                exist_ok=True
            )
            logger.info(f"Repository {repo_name} is ready")
            return repo_name
        except Exception as e:
            logger.error(f"Error setting up repository: {e}")
            raise

    def verify_model_exists(self, model_name: str) -> bool:
        """Verify if the model exists and is accessible"""
        try:
            model_info(model_name, token=self.token)
            return True
        except Exception as e:
            logger.error(f"Model verification failed: {str(e)}")
            return False

    def convert_and_push(self, source_model: str, target_repo: str):
        """Convert model to ONNX and push to Hugging Face Hub"""
        try:
            # Verify model exists and is accessible
            if not self.verify_model_exists(source_model):
                raise ValueError(f"Model {source_model} is not accessible. Check if the model exists and you have proper permissions.")

            # Use model cache directory if specified
            model_kwargs = {
                "token": self.token
            }
            if self.model_cache_dir:
                model_kwargs["cache_dir"] = self.model_cache_dir

            # Create working directory
            working_dir = self.onnx_output_dir or tempfile.mkdtemp()
            tmp_path = Path(working_dir) / f"{target_repo.split('/')[-1]}.onnx"
                
            logger.info(f"Loading model {source_model}...")
            model = AutoModelForSemanticSegmentation.from_pretrained(
                source_model,
                **model_kwargs
            )
            processor = SegformerImageProcessor.from_pretrained(
                source_model,
                **model_kwargs
            )

            # Set model to evaluation mode
            model.eval()

            # Create dummy input
            dummy_input = processor(
                images=torch.zeros(1, 3, 224, 224),
                return_tensors="pt"
            )

            # Export to ONNX
            logger.info(f"Converting to ONNX format... Output path: {tmp_path}")
            torch.onnx.export(
                model,
                (dummy_input['pixel_values'],),
                tmp_path,
                input_names=['input'],
                output_names=['output'],
                dynamic_axes={
                    'input': {0: 'batch_size', 2: 'height', 3: 'width'},
                    'output': {0: 'batch_size'}
                },
                opset_version=12,
                do_constant_folding=True
            )

            # Create model card with environment info
            model_card = f"""---
base_model: {source_model}
tags:
- onnx
- semantic-segmentation
---

# ONNX Model converted from {source_model}

This is an ONNX version of the model {source_model}, converted automatically.

## Model Information
- Original Model: {source_model}
- ONNX Opset Version: 12
- Input Shape: Dynamic (batch_size, 3, height, width)

## Usage

```python
import onnxruntime as ort
import numpy as np

# Load ONNX model
session = ort.InferenceSession("model.onnx")

# Prepare input
input_data = np.zeros((1, 3, 224, 224), dtype=np.float32)

# Run inference
outputs = session.run(None, {{"input": input_data}})
```
"""
            # Save model card
            readme_path = Path(working_dir) / "README.md"
            with open(readme_path, "w") as f:
                f.write(model_card)

            # Push files to hub
            logger.info(f"Pushing files to {target_repo}...")
            self.api.upload_file(
                path_or_fileobj=str(tmp_path),
                path_in_repo="model.onnx",
                repo_id=target_repo,
                token=self.token
            )
            self.api.upload_file(
                path_or_fileobj=str(readme_path),
                path_in_repo="README.md",
                repo_id=target_repo,
                token=self.token
            )

            logger.info(f"Successfully pushed ONNX model to {target_repo}")
            return True

        except Exception as e:
            logger.error(f"Error during conversion and upload: {e}")
            return False

def main():
    parser = argparse.ArgumentParser(description='Convert and push model to ONNX format on Hugging Face Hub')
    parser.add_argument('--source', type=str, required=True,
                      help='Source model name (e.g., "sayeed99/segformer-b3-fashion")')
    parser.add_argument('--target', type=str, required=True,
                      help='Target repository name (e.g., "your-username/model-name-onnx")')
    parser.add_argument('--token', type=str, help='Hugging Face token (optional)')

    args = parser.parse_args()

    converter = HFOnnxConverter(token=args.token)
    converter.setup_repository(args.target)
    success = converter.convert_and_push(args.source, args.target)
    
    if not success:
        exit(1)

if __name__ == "__main__":
    main()