Spaces:
Running
Running
Alex
commited on
Commit
·
077a679
1
Parent(s):
f6210c2
added new endpoint
Browse files
README.md
CHANGED
@@ -37,4 +37,8 @@ ir
|
|
37 |
|
38 |
curl -X POST "http://localhost:7860/segment" \
|
39 |
-H "Content-Type: application/json" \
|
40 |
-
-d "{\"image_base64\": \"$(base64 woman_with_bag.jpeg)\"}"
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
curl -X POST "http://localhost:7860/segment" \
|
39 |
-H "Content-Type: application/json" \
|
40 |
+
-d "{\"image_base64\": \"$(base64 woman_with_bag.jpeg)\"}"
|
41 |
+
|
42 |
+
|
43 |
+
# Output
|
44 |
+
{"mask":"data:image/png;base64...","annotations":{"mask":[[]]"label":"fashion"}}
|
app.py
CHANGED
@@ -1,15 +1,22 @@
|
|
1 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
|
3 |
import torch
|
|
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import io
|
7 |
import base64
|
8 |
import logging
|
|
|
|
|
9 |
|
10 |
# Inizializza l'app FastAPI
|
11 |
app = FastAPI()
|
12 |
|
|
|
|
|
|
|
|
|
13 |
# Configura il logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
logger = logging.getLogger(__name__)
|
@@ -74,6 +81,56 @@ async def segment_endpoint(file: UploadFile = File(...)):
|
|
74 |
logger.error(f"Errore nell'endpoint: {str(e)}")
|
75 |
raise HTTPException(status_code=500, detail=f"Errore nell'elaborazione: {str(e)}")
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
# Per compatibilità con Hugging Face Spaces
|
78 |
if __name__ == "__main__":
|
79 |
import uvicorn
|
|
|
1 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
|
3 |
import torch
|
4 |
+
from pydantic import BaseModel
|
5 |
from PIL import Image
|
6 |
import numpy as np
|
7 |
import io
|
8 |
import base64
|
9 |
import logging
|
10 |
+
import requests
|
11 |
+
import torch.nn as nn
|
12 |
|
13 |
# Inizializza l'app FastAPI
|
14 |
app = FastAPI()
|
15 |
|
16 |
+
# Add this class for the request body
|
17 |
+
class ImageURL(BaseModel):
|
18 |
+
url: str
|
19 |
+
|
20 |
# Configura il logging
|
21 |
logging.basicConfig(level=logging.INFO)
|
22 |
logger = logging.getLogger(__name__)
|
|
|
81 |
logger.error(f"Errore nell'endpoint: {str(e)}")
|
82 |
raise HTTPException(status_code=500, detail=f"Errore nell'elaborazione: {str(e)}")
|
83 |
|
84 |
+
|
85 |
+
|
86 |
+
# Add new endpoint
|
87 |
+
@app.post("/segment-url")
|
88 |
+
async def segment_url_endpoint(image_data: ImageURL):
|
89 |
+
try:
|
90 |
+
logger.info("Downloading image from URL...")
|
91 |
+
response = requests.get(image_data.url, stream=True)
|
92 |
+
if response.status_code != 200:
|
93 |
+
raise HTTPException(status_code=400, detail="Could not download image from URL")
|
94 |
+
|
95 |
+
# Open image from URL
|
96 |
+
image = Image.open(response.raw).convert("RGB")
|
97 |
+
|
98 |
+
# Process image with SegFormer
|
99 |
+
logger.info("Processing image...")
|
100 |
+
inputs = processor(images=image, return_tensors="pt")
|
101 |
+
outputs = model(**inputs)
|
102 |
+
logits = outputs.logits.cpu()
|
103 |
+
|
104 |
+
# Upsample logits to match original image size
|
105 |
+
upsampled_logits = nn.functional.interpolate(
|
106 |
+
logits,
|
107 |
+
size=image.size[::-1],
|
108 |
+
mode="bilinear",
|
109 |
+
align_corners=False,
|
110 |
+
)
|
111 |
+
|
112 |
+
# Get prediction
|
113 |
+
pred_seg = upsampled_logits.argmax(dim=1)[0]
|
114 |
+
|
115 |
+
# Convert to image
|
116 |
+
mask_img = Image.fromarray((pred_seg.numpy() * 255).astype(np.uint8))
|
117 |
+
|
118 |
+
# Convert to base64
|
119 |
+
buffered = io.BytesIO()
|
120 |
+
mask_img.save(buffered, format="PNG")
|
121 |
+
mask_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
122 |
+
|
123 |
+
return {
|
124 |
+
"mask": f"data:image/png;base64,{mask_base64}",
|
125 |
+
"size": image.size,
|
126 |
+
"labels" : pred_seg
|
127 |
+
}
|
128 |
+
|
129 |
+
except Exception as e:
|
130 |
+
logger.error(f"Error processing URL: {str(e)}")
|
131 |
+
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
132 |
+
|
133 |
+
|
134 |
# Per compatibilità con Hugging Face Spaces
|
135 |
if __name__ == "__main__":
|
136 |
import uvicorn
|